首页> 外文期刊>Small >Silica Nanowire Growth on Coscinodiscus Species Diatom Frustules via Vapor-Liquid-Solid Process
【24h】

Silica Nanowire Growth on Coscinodiscus Species Diatom Frustules via Vapor-Liquid-Solid Process

机译:Sicosinodiscus硅藻土的二氧化硅纳米线生长通过蒸汽 - 液体固体工艺进行硅藻粉

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Diatom frustules are a type of porous silicon dioxide microparticle that has long been used in applications ranging from biomedical sensors to dyesensitized solar cells. The favorable material properties, enormous surface area, and enhanced light scattering capacity support the promise of diatom frustules as candidates for next generation biomedical devices and energy applications. In this study, the vapor-liquid-solid (VLS) method is employed to incorporate silica nanowires on the surface of diatom frustules. Compared to the original frustule structures, the frustule-nanowire composite material's surface area increases over 3-fold, and the light scattering ability increases by 10%. By varying the gold catalyst thickness during the VLS process, tuning of the resultant nanowire length/density is achieved. Through material characterization, it is determined that both float growth and root growth processes jointly result in the growth of the silica nanowires. From a thermodynamics point of view, the preferential growth of the silica nanowires on frustules is found to have resulted from the enormous partial surface area of gold nanoparticles on the diatom frustules. The frustule-nanowire composite materials have potential applications in the development of novel biomedical sensing devices and may greatly enhance next generation solar cell performance.
机译:硅藻壳是一种多孔二氧化硅微粒,长期已用于从生物医学传感器到染发剂化太阳能电池的应用范围内。良好的材料特性,巨大的表面积和增强的光散射能力支持硅藻粉的承诺作为下一代生物医学装置和能量应用的候选者。在该研究中,使用蒸汽 - 液体 - 固体(VLS)方法将二氧化硅纳米线掺入硅藻壳表面上。与原始的截肢结构相比,截肢纳米线复合材料的表面积超过3倍,光散射能力增加10%。通过在VLS过程中改变金催化剂厚度,实现所得纳米线长度/密度的调谐。通过材料表征,确定浮法生长和根生长过程共同导致二氧化硅纳米线的生长。从热力学的角度来看,发现二氧化硅纳米线在截肢上的优先生长是由硅纳米颗粒的巨大部分表面积导致硅藻粉末中的巨大部分表面积。截肢纳米线复合材料具有新的生物医学传感装置的开发中的潜在应用,并且可以大大提高下一代太阳能电池性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号