首页> 外文期刊>SIAM Journal on Scientific Computing >FAST COMPUTATION OF SPECTRAL DENSITIES FOR GENERALIZED EIGENVALUE PROBLEMS
【24h】

FAST COMPUTATION OF SPECTRAL DENSITIES FOR GENERALIZED EIGENVALUE PROBLEMS

机译:广义特征值问题的频谱密度的快速计算

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The distribution of the eigenvalues of a Hermitian matrix (or of a Hermitian matrix pencil) reveals important features of the underlying problem, whether a Hamiltonian system in physics or a social network in behavioral sciences. However, computing all the eigenvalues explicitly is prohibitively expensive for real-world applications. This paper presents two types of methods to efficiently estimate the spectral density of a matrix pencil (A, B) where both A and B are sparse Hermitian and B is positive definite. The methods are targeted at the situation when the matrix B scaled by its diagonal is very well conditioned, as is the case when the problem arises from some finite element discretizations of certain partial differential equations. The first method is an adaptation of the kernel polynomial method (KPM) and the second is based on Gaussian quadrature by the Lanczos procedure. By employing Chebyshev polynomial approximation techniques, we can avoid direct factorizations in both methods, making the resulting algorithms suitable for large matrices. Under some assumptions, we prove bounds that suggest that the Lanczos method converges twice as fast as the KPM method. Numerical examples further indicate that the Lanczos method can provide more accurate spectral densities when the eigenvalue distribution is highly nonuniform. As an application, we show how to use the computed spectral density to partition the spectrum into intervals that contain roughly the same number of eigenvalues. This procedure, which makes it possible to compute the spectrum by parts, is a key ingredient in the new breed of eigensolvers that exploit "spectrum slicing."
机译:隐士矩阵(或麦克尔米特矩阵铅笔)的特征值的分布揭示了潜在问题的重要特征,无论是物理学中的汉密尔顿系统还是行为科学中的社交网络。但是,计算所有特征值明确地对现实应用程序非常昂贵。本文呈现了两种类型的方法,以有效地估计矩阵铅笔(A,B)的光谱密度,其中A和B都稀疏的隐士Hermitian和B是正定的。当通过其对角线缩放的矩阵B的矩阵B非常合理地,该方法是针对的,因为问题出现了某些部分微分方程的一些有限元离散化的情况。第一种方法是内核多项式方法(KPM)的适应,第二种方法基于Lanczos程序基于高斯正交。通过使用Chebyshev多项式近似技术,我们可以避免两种方法中的直接构造,使得适合于大矩阵的所得算法。在一些假设下,我们证明了界定的界限,即Lanczos方法会收敛两倍以KPM方法。数值实例进一步表明,当特征值分布高度均匀时,Lanczos方法可以提供更精确的光谱密度。作为应用程序,我们展示了如何使用计算的光谱密度将光谱分为包含大致相同数量的特征值的间隔。这一程序使得可以通过零件计算光谱,是新品种的eIgensolvers的关键成分,其利用“频谱切片”。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号