...
首页> 外文期刊>SIAM Journal on Scientific Computing >MULTILEVEL MONTE CARLO FOR SMOOTHING VIA TRANSPORT METHODS
【24h】

MULTILEVEL MONTE CARLO FOR SMOOTHING VIA TRANSPORT METHODS

机译:多级蒙特卡罗通过运输方法平滑

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this article we consider recursive approximations of the smoothing distribution associated to partially observed stochastic differential equations (SDEs), which are observed discretely in time. Such models appear in a wide variety of applications including econometrics, finance, and engineering. This problem is notoriously challenging, as the smoother is not available analytically and hence requires numerical approximation. This usually consists of applying a time-discretization to the SDE, for instance the Euler method, and then applying a numerical (e.g., Monte Carlo) method to approximate the smoother. This has led to a vast literature on methodology for solving such problems, perhaps the most popular of which is based upon the particle filter (PF), e.g., [A. Doucet and A. Johansen, Handbook of Nonlinear Filtering, Oxford University Press, 2011]. In the context of filtering for this class of problems, it is well known that the particle filter can be improved upon in terms of cost to achieve a given mean squared error (MSE) for estimates. This is in the sense that the computational effort can be reduced to achieve this target MSE by using multilevel methods [M. B. Giles, Oper. Res., 56 (2008), pp. 607-617; M. B. Giles, Acta Numer., 24 (2015), pp. 259-328; S. Heinrich, in Large-Scale Scientific Computing, Springer, New York, 2001] via the multilevel particle filter (MLPF) [A. Gregory, C. Cotter, and S. Reich, SIAM J. Sci. Comp., 38 (2016), pp. A1317-A1338; A. Jasra, K. Kamatani, K. J. Law, and Y. Zhou, SIAM J. Numer. Anal., 55 (2017), pp. 3068-3096; A. Jasra, K. Kamatani, P. Osei, and Y. Zhou, Stat. Comp., 28 (2018), pp. 47-60]. For instance, to obtain a MSE of O(epsilon(2)) for some epsilon 0 when approximating filtering distributions associated with Euler-discretized diffusions with constant diffusion coefficients, the cost of the PF is O(epsilon(-3)) while the cost of the MLPF is O(epsilon(-2) log(epsilon)(2)). In this article we consider a new approach
机译:在本文中,我们考虑与部分观察到的随机微分方程(SDE)相关联的平滑分布的递归近似,其在时间均匀地观察。这些模型出现在各种应用中,包括经济学,金融和工程。这个问题是臭名昭着的挑战,因为更光滑的分析不可用,因此需要数值近似。这通常包括将时间离散化应用于SDE,例如欧拉方法,然后施加数值(例如,蒙特卡罗)方法以近似更平滑。这导致了解决这些问题的方法论的广泛文献,也许是基于粒子滤波器(PF),例如[A. Doucet和A. Johansen,非线性滤波手册,牛津大学出版社,2011年。在过滤这类问题的上下文中,众所周知,在成本方面可以改善粒子滤波器以实现估计的给定均方误差(MSE)。这是在意义上,可以通过使用多级方法来减少计算工作以实现该目标MSE [M. B.吉尔斯,运作。 Res。,56(2008),第607-617页; M. B. Giles,Acta Nomer。,24(2015),PP。259-328; S. Heinrich,大规模科学计算,春家,纽约,2001]通过多级粒子过滤器(MLPF)[A. Gregory,C.Cotter,以及S.Reich,Siam J. Sci。 Comp。,38(2016),PP。A1317-A1338; A.贾斯拉,K.Kamatani,K. J. Law,以及Y.Zhou,Siam J.Momer。肛门。,55(2017),pp。3068-3096; A.贾斯拉,K.Kamatani,P.Osei和Y.Zhou,Stat。 Comp。,28(2018),第47-60页。例如,为了获得一些epsilon&gt的o(epsilon(2))的MSE; 0当近似与具有恒定扩散系数的欧拉离散化漫射相关的滤波分布时,PF的成本是O(epsilon(-3)),而MLPF的成本是O(epsilon(-2)对数(epsilon)(2 )))。在本文中,我们考虑了一种新方法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号