...
首页> 外文期刊>Separation and Purification Technology >Core/shell FeVO4@BiOCl heterojunction as a durable heterogeneous Fenton catalyst for the efficient sonophotocatalytic degradation of p-nitrophenol
【24h】

Core/shell FeVO4@BiOCl heterojunction as a durable heterogeneous Fenton catalyst for the efficient sonophotocatalytic degradation of p-nitrophenol

机译:核心/壳FEVO4 @ Biocl异质结作为耐用的异构Fenton催化剂,用于高硝基苯酚的有效声光催化降解

获取原文
获取原文并翻译 | 示例

摘要

In this study, a FeVO4@BiOCl p-n heterojunction with n-type porous FeVO4 nanorods as the core and p-type flower-like BiOCl nanostructures as the shell was successfully prepared by a facile hydrothermal method. The novel heterostructure was investigated as a durable heterogeneous Fenton catalyst for ultrasonic irradiation (US), ultraviolet irradiation (UV) and coupling irradiation systems (US/UV). Characterization of FeVO4@BiOCl core shell heterojunction was conducted by XRD, SEM, EDS elemental mapping, TEM, HRTEM, SAED, FTIR, Raman, BET, PZC, XPS and DRS. Several different experimental parameters, including irradiation time, H2O2 concentration, catalyst amount, initial concentration, and pH value, were optimized. The stability and reusability of the prepared FeVO4@BiOCl core shell heterojunction were evaluated as well. Mineralization experiments were carried out using the optimized parameters. The results showed that FeVO4@BiOCl core shell heterojunction exhibits a superior sonophotocatalytic performance compared to either sonocatalysis or photocatalysis. Moreover, the formation of p-n core@shell nanostructures could significantly increase the pH(pz)(c), and to an excellent stability for the degradation of PNP after six cycles. The remarkable enhancement of the degradation performance of FeVO4@BiOCl core shell heterojunction can be attributed to the unique structure and morphology with a matched energy band structure owing to the internal electric field induced by the p-n junction, a high transfer efficiency and the efficient separation of e(-) /h(+) pairs, resulting in a huge number of reactive species for the degradation of PNP. A plausible mechanism over FeVO4@BiOCl core shell heterojunction for the sonophotocatalytic degradation of PNP is proposed based on a special three-way, i.e. one as a photocatalyst and a two-way Fenton-like mechanism with the dissociation of H2O2. Active species trapping and calculated band gap energy were also discussed.
机译:在该研究中,通过容易的水热方法成功地制备了作为壳的核和p型花样的BioClods作为芯和p型花样的BioCl纳米结构的FeVO4 @ BioCl P-N异质结。研究了新型异质结构,作为用于超声辐射(US),紫外线辐射(UV)和偶联辐照系统(US / UV)的耐用的异质芬顿催化剂。 FEVO4的表征@ BioCl核心壳异质结由XRD,SEM,EDS元素映射,TEM,HRTEM,SAED,FTIR,拉曼,BET,PZC,XPS和DRS进行。优化了几种不同的实验参数,包括照射时间,H 2 O 2浓度,催化剂量,初始浓度和pH值。还评价制备的FEVO4 @ BioCl核壳异质结的稳定性和可重用性。使用优化参数进行矿化实验。结果表明,与单一偶联或光催化相比,FEVO4 @ BioCl核心壳异质结表现出优异的声光催化性能。此外,P-N核心/壳纳米结构的形成可以显着增加pH(PZ)(C),并在六个循环后降解PNP的优异稳定性。 Fevo4 @ Biocl核心壳异质结的降解性能的显着提高可归因于由于PN结引起的内部电场,高转移效率和有效分离而归因于匹配的能带结构的独特结构和形态。 E( - )/ h(+)对,导致大量的反应性物种用于降解PNP。基于特殊的三向,即作为光催化剂,基于特殊的三通,作为光催化剂和双向芬顿的机制,将PNP的SONPotoctalytictation的SONPOC催化降解PNP的SONOCLOCALα异质结合的合理机制。还讨论了活性物种捕获和计算的带隙能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号