...
首页> 外文期刊>Separation and Purification Technology >Optimal scheduling of multiple sets of air separation units with frequent load-change operation
【24h】

Optimal scheduling of multiple sets of air separation units with frequent load-change operation

机译:频繁加载变化操作多组空气分离单元的最佳调度

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Cryogenic air separation is a highly energy-intensive process used to produce gaseous and liquid products. When the demand of gaseous products is frequently varying as in an iron and steel plant, air separation units (ASUs) are required to immediately respond to meet the changing demand. For a plant with multiple sets of ASUs and frequent load-change demands, the optimal scheduling of each unit becomes essential. In this study, an air separation process with different types of ASUs, together with vaporizers and liquefiers, is analyzed. Both gaseous and liquid products are involved in the process. A separate-mode strategy is proposed for modeling the ASUs with load-change capability. The production of units is represented with a set of operating modes determined by operating feature, and each mode is described with a convex hull according to historical industrial data. Transition behaviors are modeled, especially during load change. Considering the different load features of the units, a scheduling strategy is proposed to optimize the total profit margin within a certain time horizon. A mixed-integer linear programming (MILP) is developed for the process scheduling. With the data obtained from real industrial operations, the good performance of the proposed system is demonstrated. Effects of the demand uncertainty are also analyzed. (C) 2016 Elsevier B.V. All rights reserved.
机译:低温空气分离是一种高度能量密集的方法,用于生产气体和液体产品。当气态产品的需求通常如钢铁和钢铁设备中变化时,需要空气分离单元(华硕)才能立即响应满足不断变化的需求。对于具有多套华硕和频繁负载变化需求的工厂,每个单元的最佳调度变得必不可少。在这项研究中,分析了具有不同类型华硕的空气分离过程以及蒸发器和液化剂。气态和液体产品均参与该过程。提出了一种单独模式策略,用于使用负载变化能力建模华硕。单位的生产用通过操作特征确定的一组操作模式表示,并且根据历史工业数据,用凸壳描述了每种模式。过渡行为是建模的,尤其是在负载变化期间。考虑到单位的不同负载特征,提出了一种调度策略,以优化一定时间范围内的总利润率。为流程调度开发了混合整数线性编程(MILP)。利用从真正的工业运营获得的数据,证明了所提出的系统的良好性能。还分析了需求不确定性的影响。 (c)2016年Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Separation and Purification Technology》 |2017年第2017期|共14页
  • 作者单位

    Zhejiang Univ Coll Control Sci &

    Engn State Key Lab Ind Control Technol Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ Coll Control Sci &

    Engn State Key Lab Ind Control Technol Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ Technol Coll Chem Engn Hangzhou 310014 Zhejiang Peoples R China;

    Zhejiang Univ Coll Control Sci &

    Engn State Key Lab Ind Control Technol Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ Coll Control Sci &

    Engn State Key Lab Ind Control Technol Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ Coll Control Sci &

    Engn State Key Lab Ind Control Technol Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ Coll Control Sci &

    Engn State Key Lab Ind Control Technol Hangzhou 310027 Zhejiang Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分离过程;气化工艺;
  • 关键词

    Production scheduling; Load change; Air separation; Optimization; MILP;

    机译:生产调度;负荷变化;空气分离;优化;摩洛;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号