首页> 外文期刊>SAE International Journal of Engines >Analysis of Temperature Swing Thermal Insulation for Performance Improvement of Diesel Engines
【24h】

Analysis of Temperature Swing Thermal Insulation for Performance Improvement of Diesel Engines

机译:柴油发动机性能改善温度摆动热绝缘分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Insulating combustion chamber surfaces with thermal barrier coatings (TBCs) provides thermal efficiency improvement when done appropriately. This article reports on insulation heat transfer, engine performance characteristics, and damage modelling of "temperature swing" TBCs. "Temperature swing" insulation refers to the insulation material applied on surfaces of combustion chamber walls that enables selective manipulation of its surface temperature profile over the four strokes of an engine cycle. A combined GT Suite-ANSYS Fluent simulation methodology is developed to investigate the impact of thermal properties and insulation thickness for a variety of TBC materials for its "temperature swing" characteristics. This one-dimensional transient heat conduction analyses and engine cycle simulations are performed using scaled-down thermal properties of yttria-stabilized zirconia. The impact of heat insulation on thermal efficiency is quantified, and it is found that when insulation rate of 48% is achieved by applying coatings only on the piston top surface, engine thermal efficiency can be improved by up to 1.5%. Subsequently, the impact of TBC properties on engine thermal efficiency and volumetric efficiency at different engine speeds (frequency) and loads is discussed. Subsequent to IC engine performance prediction, a parametric analysis is performed for studying various conditions of damage in TBCs. It is often found that many TBCs show promise at time zero, that is, during initial testing, and performance and life degrades over a period of time. Hence, a TBC should have a long life, be reliable, account for manufacturing variations, and be inexpensive. Johnson-Cook damage model is used for which material parameters found based on experimental data are reported in literature. Effects of thickness, modulus of elasticity, and thermal conductivity are studied on damage and strain to fracture in TBC. It is found that damage is maximum for higher thermal conductivity, higher TBC thickness, and higher elastic modulus.
机译:绝缘燃烧室表面具有热阻挡涂层(TBC)在适当的情况下进行热效率改善。本文报道了“温度摆动”TBC的绝缘传热,发动机性能特性和损坏建模。 “温度摆动”绝缘是指涂在燃烧室壁的表面上的绝缘材料,其能够在发动机循环的四冲程中选择性地操纵其表面温度曲线。开发了一种GT套件-Ansys流畅的仿真方法,用于研究热能性能和绝缘厚度的影响,以获得各种TBC材料的“温度摆动”特性。这种一维瞬态导热分析和发动机循环模拟是使用ytTria稳定的氧化锆的缩小热性能进行的。热绝缘对热效率的影响是量化的,并且发现通过仅在活塞顶面上施加涂层来实现48%的绝缘速率,发动机热效率可以提高至1.5%。随后,讨论了TBC性质对不同发动机速度(频率)和负载时发动机热效率和体积效率的影响。在IC发动机性能预测之后,进行参数分析,用于研究TBCS中的各种损坏条件。经常发现许多TBC在零时时显示承诺,即在初始测试期间,在一段时间内,性能和寿命会降低。因此,TBC应该具有较长的寿命,可靠,占制造变化,并且廉价。 Johnson-Cook损伤模型用于基于实验数据的基于实验数据的材料参数。研究了TBC损伤和损伤对裂缝的损伤和抗热度和导热率的影响。发现损坏是最大的导热性,更高的TBC厚度和更高的弹性模量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号