首页> 外文期刊>SAE International Journal of Engines >Experiments and Large-Eddy Simulation for a Flowbench Configuration of the Darmstadt Optical Engine Geometry
【24h】

Experiments and Large-Eddy Simulation for a Flowbench Configuration of the Darmstadt Optical Engine Geometry

机译:Darmstadt光学发动机几何的流动配置的实验和大涡模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The development and control of spark-ignition engines with increased efficiency and reduced engine-out emissions requires tools and methods capable of providing insight and eventually predicting Cycle-to-Cycle Variations (CCV). To this end, Large-Eddy Simulations (LES) can improve the understanding of stochastic in-cylinder phenomena during the engine design process. However, available LES methods are typically not able to reproduce the full extent of cyclic variability observed in experiments, and computational costs are higher compared to established simulation approaches. In this work, an engine flowbench configuration suitable for validation of LES methods and intake flow assessment is considered. To supplement an existing validation database, Particle Image Velocimetry (PIV) and wall pressure measurements have been conducted in a reference optical engine geometry, which is available through the Darmstadt Engine Workshop. To facilitate future LES validation studies, a simulation model is proposed. LES predictions computed with an in-house code match the experimental data reasonably well. Analysis of the mean in-cylinder flow field shows that the stagnation flow caused by the interacting valve jets counteracts the formation of a bulk tumble vortex structure near the center plane. By using Proper Orthogonal Decomposition (POD), two distinct flow features that govern the intake jet dynamics are identified. More work is required to rigorously assess bulk tumble vortex stability and the impact on CCV.
机译:具有提高效率和减少发动机排放的火花点火发动机的开发和控制需要能够提供洞察力和最终预测周期到循环变化(CCV)的工具和方法。为此,大涡模拟(LES)可以改善发动机设计过程中随机缸内现象的理解。然而,可用的LES方法通常不能再现在实验中观察到的循环变异性的全部范围,与建立的模拟方法相比,计算成本更高。在这项工作中,考虑了适用于验证LES方法和进气流量评估的发动机流动钳配置。为了补充现有的验证数据库,在参考光学发动机几何体中进行了粒子图像测速仪(PIV)和壁压测量,可通过Darmstadt发动机车间获得。为了促进未来的LES验证研究,提出了一种模拟模型。使用内部代码计算的LES预测相当匹配实验数据。平均气缸流场的分析表明,相互作用阀喷射引起的停滞流动抵消了中心平面附近的散装涡流结构的形成。通过使用适当的正交分解(POD),识别出管理进气动力学的两个不同的流量特征。需要更多的工作来严格评估散装涡流稳定性和对CCV的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号