首页> 外文期刊>Sadhana: Academy Proceedings in Engineering Science >GPGPU-based parallel computing applied in the FEM using the conjugate gradient algorithm: a review
【24h】

GPGPU-based parallel computing applied in the FEM using the conjugate gradient algorithm: a review

机译:基于GPGPU的并行计算应用于使用共轭梯度算法的有限元素:综述

获取原文
获取原文并翻译 | 示例
           

摘要

Parallelization of the finite-element method (FEM) has been contemplated by the scientific and high-performance computing community for over a decade. Most of the computations in the FEM are related to linear algebra that includes matrix and vector computations. These operations have the single-instruction multiple-data (SIMD) computation pattern, which is beneficial for shared-memory parallel architectures. General-purpose graphics processing units (GPGPUs) have been effectively utilized for the parallelization of FEM computations ever since 2007. The solver step of the FEM is often carried out using conjugate gradient (CG)-type iterative methods because of their larger convergence rates and greater opportunities for parallelization. Although the SIMD computation patterns in the FEM are intrinsic for GPU computing, there are some pitfalls, such as the underutilization of threads, uncoalesced memory access, lower arithmetic intensity, limited faster memories on GPUs and synchronizations. Nevertheless, FEM applications have been successfully deployed on GPUs over the last 10 years to achieve a significant performance improvement. This paper presents a comprehensive review of the parallel optimization strategies applied in each step of the FEM. The pitfalls and trade-offs linked to each step in the FEM are also discussed in this paper. Furthermore, some extraordinary methods that exploit the tremendous amount of computing power of a GPU are also discussed. The proposed review is not limited to a single field of engineering. Rather, it is applicable to all fields of engineering and science in which FEM-based simulations are necessary.
机译:有限元方法(FEM)的并行化已经被科学和高性能计算界占据了十多年。 FEM中的大多数计算与包括矩阵和矢量计算的线性代数有关。这些操作具有单指令多数据(SIMD)计算模式,这对于共享存储器并行架构是有益的。自2007年以来,已经有效地利用了通用图形处理单元(GPGPU)的有效计算的并行化。由于其较大的收敛速率和收敛速率,通常使用缀合物梯度(CG)迭代方法进行FEM的求解步骤。平行化的更多机会。虽然FEM中的SIMD计算模式是GPU计算的内在,但有一些陷阱,例如线程的未充分利用,未扩展的存储器访问,较低的算术强度,对GPU的更快的存储器和同步。尽管如此,在过去10年中已成功部署了FEM应用程序,以实现显着的性能改进。本文介绍了对FEM的每个步骤中应用的并行优化策略的全面审查。本文还讨论了与FEM中的每个步骤相关的陷阱和权衡。此外,还讨论了利用GPU的巨大计算能力的一些非凡方法。拟议的审查不仅限于单一工程领域。相反,它适用于所有工程和科学领域,其中基于FEM的模拟是必要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号