...
首页> 外文期刊>Operations Research: The Journal of the Operations Research Society of America >The Replenishment Schedule to Minimize Peak Storage Problem: The Gap Between the Continuous and Discrete Versions of the Problem
【24h】

The Replenishment Schedule to Minimize Peak Storage Problem: The Gap Between the Continuous and Discrete Versions of the Problem

机译:补充计划最小化峰值存储问题:问题的连续和离散版本之间的差距

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The replenishment storage problem (RSP) is to minimize the storage capacity requirement for a deterministic demand, multi-item inventory system, where each item has a given reorder size and cycle length. We consider the discrete RSP, where reorders can only take place at an integer time unit within the cycle. Discrete RSP was shown to be NP-hard for constant joint cycle length (the least common multiple of the length of all individual cycles). We show here that discrete RSP is weakly NP-hard for constant joint cycle length and prove that it is strongly NP-hard for nonconstant joint cycle length. For constant joint cycle-length discrete RSP, we further present a pseudopolynomial time algorithm that solves the problem optimally and the first known fully polynomial time approximation scheme (FPTAS) for the single-cycle RSP. The scheme is utilizing a new integer programming formulation of the problem that is introduced here. For the strongly NP-hard RSP with nonconstant joint cycle length, we provide a polynomial time approximation scheme (PTAS), which for any fixed e, provides a linear time e approximate solution. The continuous RSP, where reorders can take place at any time within a cycle, seems (with our results) to be easier than the respective discrete problem. We narrow the previously known complexity gap between the continuous and discrete versions of RSP for the multi-cycle RSP (with either constant or nonconstant cycle length) and the single-cycle RSP with constant cycle length and widen the gap for single-cycle RSP with nonconstant cycle length. For the multi-cycle case and constant joint cycle length, the complexity status of continuous RSP is open, whereas it is proved here that the discrete RSP is weakly NP-hard. Under our conjecture that the continuous RSP is easier than the discrete one, this implies that continuous RSP on multi-cycle and constant joint cycle length (currently of unknown complexity status) is at most weakly NP-hard.
机译:补充存储问题(RSP)是最小化确定性需求,多项清单系统的存储容量要求,其中每个项目具有给定的重新排序大小和循环长度。我们考虑离散RSP,其中重新排序只能在周期内的整数时间单位进行。离散RSP被显示为NP - 恒定的关节周期长度(所有单个循环的至少常见倍数)。我们在这里展示了离散的RSP对于恒定的关节周期长度是弱NP - 硬,并且证明它对于不合适的关节循环长度是强烈的NP - 硬。对于恒定的联合周期长度离散RSP,我们进一步提出了一种伪二极管时间算法,其最佳地解决了问题,以及用于单周期RSP的第一已知的全多项时间近似方案(FPTA)。该方案正在利用新的整数编程配方在此介绍的问题。对于具有不合作的关节循环长度的强大NP硬RSP,我们提供了一种用于任何固定e的多项式时间近似方案(PTA),提供线性时间E近似解。连续RSP,重新排序可以在一个周期内的任何时间进行,似乎(随着我们的结果)比相应的离散问题更容易。我们缩小了用于多循环RSP的连续和离散版本的连续和离散版本的复杂性间隙(具有恒定或非间距周期长度)和具有恒定循环长度的单周期RSP,并扩大单循环RSP的间隙不合适的循环长度。对于多循环壳体和恒定的关节周期长度,连续RSP的复杂性状态是打开的,而在此证明,离散RSP是弱NP - 硬的。在我们的猜想下,连续RSP比离散的更容易,这意味着在多周期和恒定的关节周期长度上的连续RSP(目前未知的复杂性状态)是最弱的NP - 硬。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号