首页> 外文期刊>Optics & Laser Technology >Microstructure and mechanical properties of thin-wall structure by hybrid laser metal deposition and laser remelting process
【24h】

Microstructure and mechanical properties of thin-wall structure by hybrid laser metal deposition and laser remelting process

机译:混合激光金属沉积和激光重熔工艺薄壁结构的组织和力学性能

获取原文
获取原文并翻译 | 示例
           

摘要

Laser remelting (LR) is generally applied to the coating or selective laser melting process to improve the surface quality and density of the formed structure. However, the effect of LR treatment on each cladding layer during laser metal deposition (LMD) process is still lacking. Therefore, this paper adopted hybrid LR and LMD process to form the thin-wall structure by 316L steel powder, and investigated the interaction mechanism of the hybrid process on microstructure and mechanical properties. A numerical model was carried out to simulate the temperature distributions for LMD + LR process in COMSOL in order to investigate the microstructure of single-pass remelting layers. Porosity, microstructure, hardness, and tensile property were analyzed by the remelting experiments of single-pass layer and thin-wall structure. The simulation model is verified by the geometrical analysis of molten pool and thermocouple measurements of the substrate. As a result, the porosity of the single-pass remelting layer was significantly decreased as the optimized laser remelting power is equal to the cladding power. The average hardness was improved by the LR treatment. Besides, the length of columnar dendrite increased evidently and the growth direction tended to be consistent with the increase of remelting power. For the remelted thin-wall structure, the microstructure is more regular and uniform, which is reflected on the grain's direction and size. Stronger solidification structure formed in LR process contributes to superior metallurgical bonding properties between the neighboring layers. Moreover, the hybrid process can significantly improve the ultimate tensile strength and yield strength. The elongation exceeds 37% than the un-remelted thin-wall structure.
机译:激光重熔(LR)通常施加到涂层或选择性激光熔化过程中,以改善形成的结构的表面质量和密度。然而,在激光金属沉积(LMD)过程中,LR处理对每个包层(LMD)过程的影响仍然缺乏。因此,本文采用杂交LR和LMD工艺通过316L钢粉形成薄壁结构,并研究了混合过程对微观结构和机械性能的相互作用机理。进行了数值模型,以模拟COMSOL中LMD + LR过程的温度分布,以研究单通过重熔层的微观结构。通过单通层和薄壁结构的重熔试验分析孔隙率,微观结构,硬度和拉伸性能。通过基板的熔池和热电偶测量来验证仿真模型。结果,随着优化的激光重熔动力等于包层功率,单通过重熔层的孔隙率显着降低。通过LR处理改善了平均硬度。此外,柱状枝条的长度明显增加,并且生长方向往往与重熔动力的增加一致。对于重熔薄壁结构,微结构更规则且均匀,其反映在晶粒的方向和尺寸上。在LR过程中形成的较强的凝固结构有助于相邻层之间的优异冶金粘合性能。此外,杂化过程可以显着提高极限拉伸强度和屈服强度。伸长率超过未熔化的薄壁结构37%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号