首页> 外文期刊>Agricultural and Forest Meteorology >Monitoring water stress using time series of observed to unstressed surface temperature difference.
【24h】

Monitoring water stress using time series of observed to unstressed surface temperature difference.

机译:使用观察到无应力表面温差的时间序列来监控水压力。

获取原文
获取原文并翻译 | 示例
       

摘要

Remote sensing data in the thermal infra red (TIR) part of the spectrum provides indirect estimates of water stress - defined as a function of the ratio between actual and potential evaporation rates - at the earth surface. During the first stage of evaporation ("energy limited" evaporation), this ratio is close to one. During the second stage of evaporation ("soil controlled" evaporation) water stress occurs and as a result this ratio drops below one. Recently, methods using TIR data to monitor stress have shifted from establishing empirical relationships between combined vegetation cover/temperature indices and soil moisture status to data assimilation of surface temperature into complex soil-vegetation-atmosphere transfer models. However, data and expertise are often lacking to widely apply those methods. In this paper we investigate the proof-of-concept of using solely the difference between actual and unstressed surface temperature as a baseline to monitor water stress. The unstressed temperature is the equilibrium temperature of a given surface expressed in potential conditions, computed with an energy balance model. Theoretical, modelling, and experimental documentation of the proof-of-concept are shown for datasets acquired within the frame of two international experiments in semi-arid region. We show that the difference between the observed and the unstressed surface temperatures is almost linearly related to water stress. A sensitivity study is carried out to test the impact of modelling errors on the evaluation of the unstressed temperature. We found that even with inaccurate but realistic values of the surface parameters used to solve the energy balance and compute the unstressed temperature, the observed to unstressed surface temperature difference is still more relevant to detect second-stage processes than the difference between the observed surface temperature and the air temperature. The perspective of using an empirical index based on this difference is also investigated. These results are especially attractive for application based on TIR satellite imagery at a regional scale.
机译:光谱的热红外(TIR)部分中的遥感数据提供了地球表面水应力的间接估计值-定义为实际蒸发速率与潜在蒸发速率之比的函数。在蒸发的第一阶段(“能量受限”蒸发)中,该比率接近于1。在蒸发的第二阶段(“土壤控制的”蒸发)期间,会出现水分胁迫,结果该比率降至1以下。近来,使用TIR数据监测压力的方法已经从建立植被覆盖率/温度指数与土壤湿度状态之间的经验关系转变为将表面温度数据同化为复杂的土壤-植被-大气转换模型。但是,通常缺乏数据和专业知识来广泛应用这些方法。在本文中,我们研究了仅使用实际表面温度与未应力表面温度之间的差异作为监测水分胁迫的基准的概念验证。无应力温度是用能量平衡模型计算得出的以潜在条件表示的给定表面的平衡温度。显示了概念验证的理论,模型和实验文件,这些数据用于在半干旱地区进行的两次国际实验的框架内获得的数据集。我们表明,观察到的表面温度与未受应力的表面温度之间的差异几乎与水应力线性相关。进行了敏感性研究,以测试建模误差对无应力温度评估的影响。我们发现,即使用于解决能量平衡和计算无应力温度的表面参数值不准确但不切实际,与观察到的表面温度之间的差异相比,观察到的无应力表面温差对于检测第二阶段过程仍然更为重要。和空气温度。还研究了基于此差异使用经验指数的观点。这些结果对于基于TIR卫星图像在区域范围内的应用特别有吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号