首页> 外文期刊>Research on Chemical Intermediates >Determining the feasibility of H2O2 production at a graphite cathode using bond dissociation energy: comparing simple and nitrogen doped cathodes
【24h】

Determining the feasibility of H2O2 production at a graphite cathode using bond dissociation energy: comparing simple and nitrogen doped cathodes

机译:使用粘合解离能确定石墨阴极处的H2O2产生的可行性:比较简单和氮掺杂阴极

获取原文
获取原文并翻译 | 示例
           

摘要

Hydrogen peroxide (H2O2) is commercially produced by catalytic oxidation of anthrahydroquinone, which is energy-intensive. Electrochemical production of hydrogen peroxide production through oxygen reduction reaction (ORR) is a sustainable approach, primarily due to its significance in energy conversion systems such as fuel cells. Low temperature fuel cells use graphite as a cathode for H2O2 synthesis. However, the catalytic activity of a graphite cathode for a two-electron oxygen reduction reaction must be improved. Nitrogen doping is an efficient approach to modify the electrochemically active surface of the graphite cathode. Therefore, quantum chemical approaches are essential to comprehend the molecular nature of the processes at the cathode. DFT/B3LYP/6-31G* method was employed and bond dissociation energy (BDE) analysis was performed to determine the feasibility of H2O2 production at graphite and nitrogen-doped graphite (Graphite-N) cathodes. According to the suggested mechanism, oxygen adsorption is the first step of the ORR. Calculated values showed that with energy value of 23.50kcal/mol oxygen adsorption at the Graphite-N cathode is energetically more favorable than the graphite cathode (E-ad=65.08kcal/mol). Considering the ORR mechanism, a second-electron oxygen reduction is identified as a key step for both H2O and H2O2 production. Therefore, BDEs were compared at the second-electron oxygen reduction step. On average, -320.92 and -286.04kcal/mol of BDEs for graphite and Graphite-N cathodes showed the feasibility of H2O2 production at the Graphite-N cathode. The results are in agreement with the literature. Thus, it is concluded that nitrogen doping of the graphite cathode increases the feasibility of H2O2 production.
机译:通过催化氧化蒽醌的催化氧化,过氧化氢(H 2 O 2),这是能量密集的。通过氧还原反应(ORR)的过氧化氢产生的电化学生产是一种可持续的方法,主要是由于其在诸如燃料电池的能量转换系统中的重要性。低温燃料电池使用石墨作为H 2 O 2合成的阴极。然而,必须改善用于双电子氧还原反应的石墨阴极的催化活性。氮掺杂是改变石墨阴极电化学活性表面的有效方法。因此,量子化学方法对于理解阴极处的方法的分子性质是必不可少的。使用DFT / B3LYP / 6-31G *方法,进行粘合解离能(BDE)分析以确定石墨和氮掺杂石墨(石墨-N)阴极处的H 2 O 2产生的可行性。根据建议的机制,氧气吸附是ORR的第一步。计算值表明,在石墨-N阴极处的23.50kcal / mol氧吸附的能量值比石墨阴极(E-Ad = 65.08kcal / mol)能够更有利。考虑到ORR机制,将第二电子氧还原鉴定为H2O和H2O2生产的关键步骤。因此,在第二电子氧还原步骤中比较BDE。平均而言,用于石墨和石墨-N阴极的-320.92和-286.04kcal / mol的BDES显示出H2O2生产在石墨-N阴极上的可行性。结果与文献一致。因此,得出结论,石墨阴极的氮掺杂增加了H2O2生产的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号