...
首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Optimizing a remote sensing production efficiency model for macro-scale GPP and yield estimation in agroecosystems
【24h】

Optimizing a remote sensing production efficiency model for macro-scale GPP and yield estimation in agroecosystems

机译:优化宏观尺寸GPP的遥感生产效率模型及农业系统中的产量估算

获取原文
获取原文并翻译 | 示例

摘要

Earth observation data are increasingly used to provide consistent eco-physiological information over large areas through time. Production efficiency models (PEMs) estimate Gross Primary Production (GPP) as a function of the fraction of photosynthetically active radiation absorbed by the canopy, which is derived from Earth observation. GPP can be summed over the growing season and adjusted by a crop-specific harvest index to estimate yield. Although PEMs have many advantages over other crop yield models, they are not widely used, because performance is relatively poor. Here, a new PEM is presented that addresses deficiencies for macro-scale application: Production Efficiency Model Optimized for Crops (PEMOC). It was developed by optimizing functions from the literature with GPP estimated by eddy covariance flux towers in the United States. The model was evaluated using newly developed Earth observation products and county-level yield statistics for major crops. PEMOC generally performed better at the field and county level than another commonly used PEM, the Moderate Resolution Imaging Spectroradiometer GPP (MOD17). PEMOC and MOD17 estimates of GPP had an R-2 and root mean squared error (RMSE) over the growing season of 0.71-0.89 (9.87-17.47 g CO2 d(-1)) and 0.59-0.83 (6.86-22.20 g CO2 d(-1)) with flux tower GPP. PEMOC produced R(2)s and RMSE of 0.70 (0.52), 0.60 (0.61), and 0.62 (0.59), while MOD17 produced R(2)s and RMSE of 0.65 (0.57), 0.53 (0.66), and 0.65 (0.57) with corn, soybean, and winter wheat crop yield anomalies. The sample size of rice was small, so yields were compared directly. PEMOC and MOD17 produced R(2)s and RMSE of 0.53 (3.42 t h(-1)) and 0.40 (4.89 t ha(-1)). The most sizeable model improvements were seen for C-3 and C-4 crops during emergence/senescence and peak season, respectively. These improvements were attributed to C-3 and C-4 partitioning, optimized temperature and moisture constraints, and an evapotranspiration-based soil moisture index.
机译:地球观测数据越来越多地用于通过时间通过大区域提供一致的生态生态信息。生产效率模型(PEMS)估计总初级生产(GPP)作为由冠层吸收的光合作用辐射的分数的函数,这源自地球观察。 GPP可以在不断增长的季节上求和,并通过作物特异性收获指数进行调整以估算产量。虽然PEM在其他作物产量模型上具有许多优点,但它们没有被广泛使用,因为性能相对较差。在这里,提出了一种解决宏观尺度应用的缺陷的新PEM:针对作物(PEMOC)优化的生产效率模型。它是通过优化来自美国涡流协方差助塔的GPP的文献中的功能而开发的。使用新开发的地球观测产品和主要作物县级产量统计评估该模型。 PEMOC通常在现场和县级比另一个常用的PEM,适度分辨率成像光谱辐射计GPP(MOD17)更好。 GPP的PEMOC和Mod17估计在不断增长的季节为0.71-0.89(9.87-17.47g co2 d(-1))和0.59-0.83(6.86-22.20g co2 d)的R-2和均方根平方误差(RMSE) (-1))用助焊剂塔GPP。 PEMOC产生的R(2)和0.70(0.52),0.60(0.61)和0.62(0.59)的RMSE,而MOD17产生R(2)S和0.65(0.57),0.53(0.66)和0.65( 0.57)用玉米,大豆和冬小麦作物产量异常。水稻的样品尺寸小,因此直接比较产量。 PEMOC和MOD17产生R(2)S和RMSE为0.53(3.42 T H(-1))和0.40(4.89 T HA(-1))。在出苗/衰老和峰季期间,C-3和C-4作物的最大模型改进也分别观察到。这些改进归因于C-3和C-4分区,优化的温度和水分限制,以及蒸发基于蒸发的土壤湿度指数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号