首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions
【24h】

Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions

机译:作物氮监测:成像光谱特派团的最新进展和主要发展

获取原文
获取原文并翻译 | 示例
       

摘要

Nitrogen (N) is considered as one of the most important plant macronutrients and proper management of N therefore is a pre-requisite for modern agriculture. Continuous satellite-based monitoring of this key plant trait would help to understand individual crop N use efficiency and thus would enable site-specific N management. Since hyperspectral imaging sensors could provide detailed measurements of spectral signatures corresponding to the optical activity of chemical constituents, they have a theoretical advantage over multi-spectral sensing for the detection of crop N. The current study aims to provide a state-of-the-art overview of crop N retrieval methods from hyperspectral data in the agricultural sector and in the context of future satellite imaging spectroscopy missions. Over 400 studies were reviewed for this purpose, identifying those estimating mass-based N (N concentration, N%) and area-based N (N content, N-area) using hyperspectral remote sensing data. Retrieval methods of the 125 studies selected in this review can be grouped into: (1) parametric regression methods, (2) linear nonparametric regression methods or chemometrics, (3) nonlinear nonparametric regression methods or machine learning regression algorithms, (4) physically-based or radiative transfer models (RTM), (5) use of alternative data sources (sun-induced fluorescence, SIF) and (6) hybrid or combined techniques. Whereas in the last decades methods for estimation of Narea and N% from hyperspectral data have been mainly based on simple parametric regression algorithms, such as narrowband vegetation indices, there is an increasing trend of using machine learning, RTM and hybrid techniques. Within plants, N is invested in proteins and chlorophylls stored in the leaf cells, with the proteins being the major nitrogen-containing biochemical constituent. However, in most studies, the relationship between N and chlorophyll content was used to estimate crop N, focusing on the visible-near infrared (VNIR) spectral domains, and thus neglecting protein-related N and reallocation of nitrogen to non-photosynthetic compartments. Therefore, we recommend exploiting the estimation of nitrogen via the proxy of proteins using hyperspectral data and in particular the short-wave infrared (SWIR) spectral domain. We further strongly encourage a standardization of nitrogen terminology, distinguishing between N% and Narea. Moreover, the exploitation of physically-based approaches is highly recommended combined with machine learning regression algorithms, which represents an interesting perspective for future research in view of new spaceborne imaging spectroscopy sensors.
机译:氮气(n)被认为是最重要的植物MACRORRIER之一,因此N的适当管理是现代农业的先决条件。基于连续的基于卫星的监测该关键植物特征将有助于了解个人作物N使用效率,从而使特定于现场的N管理。由于高光谱成像传感器可以提供与化学成分的光学活性对应的光谱签名的详细测量,因此在多光谱传感上具有用于检测作物N的多光谱感测的理论优势。目前的研究旨在提供一种 - 农业部门高光谱数据的作物N检索方法概述,在未来卫星成像谱特派团的背景下。为此目的审查了超过400项研究,使用超细遥感数据识别估计基于质量的N(n浓度,n%)和面积的N(n内容,n区)。在本次审查中选择的125项研究的检索方法可以分组为:(1)参数回归方法,(2)线性非参数回归方法或化学计量学,(3)非线性非参数回归方法或机器学习回归算法,(4)物理 - 基于或辐射转移模型(RTM),(5)使用替代数据来源(SUN诱导的荧光,SIF)和(6)杂种或组合技术。然而,在过去几十年中,估计NAREA的估计和高光谱数据的N%主要基于简单的参数回归算法,例如窄带植被指数,使用机器学习,RTM和混合技术存在越来越大的趋势。在植物中,N被投资于储存在叶片细胞中的蛋白质和叶绿素中,用蛋白质是作为含有主要的含氮的生化成分。然而,在大多数研究中,使用N和叶绿素含量之间的关系来估计作物N,聚焦在可见近红外(VNIR)光谱结构域,因此忽略蛋白质相关的N并将氮与非光合隔室的重新分配。因此,我们建议通过使用超细数据的蛋白质代理和特别是短波红外(SWIR)光谱域来利用氮的估计。我们进一步强烈促进了氮术的标准化,区分n%和纳雷。此外,强烈建议与机器学习回归算法相结合的物理基础方法的开发,这代表了对新的星载成像光谱传感器的未来研究的有趣视角。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号