首页> 外文期刊>Rapid prototyping journal >Nanoscale mechanical properties of 3D printed gypsum-powder-based rocks by nanoindentation and numerical modeling
【24h】

Nanoscale mechanical properties of 3D printed gypsum-powder-based rocks by nanoindentation and numerical modeling

机译:纳米温度和数值模拟3D印刷石膏粉岩的纳米级力学性能

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose Evaluating mechanical properties of simply made samples by 3D printing technology at nanoscale provides a clear path to better understand larger-scale responses of complex natural rocks. Therefore, to realize the similarity between synthetically manufactured materials and natural geomaterials, this study focused on nanoscale mechanical characterization of a 3D printed object with only two constituent components (gypsum powder and infiltrant). Design/methodology/approach The study method includes nanoindentation technique combined with numerical simulation via discrete element method (DEM). Findings Four typical load-displacement curves were identified from nanoindentation of total test points indicating a typical elastic-plastic behavior of the 3D printed gypsum rock sample. Mechanical parameters such as Young's modulus and hardness were calculated by energy-based methods and a positive correlation was observed. The infiltrant was found to considerably be responsible for the majority of the sample nano-mechanical behavior rather than the gypsum particles, thus expected to control macroscale properties. This was decided from deconvolution and clustering of elastic modulus data. Particle flow modeling in DEM was used to simulate the nanoindentation process in a porous media yielding rock-alike mechanical behavior. Originality/value The results show a matching load-displacement response between experimental and simulation results, which verified the credibility of simulation modeling for mechanical behavior of 3D printed gypsum rock at nanoscale. Finally, differential effective medium theory was used to upscale the nanoindentation results to the macroscale mechanical properties, which provided an insight into the geomechanical modeling at multiscale.
机译:目的在纳米载体上通过3D打印技术评估简单的样品的机械性能提供了明确的路径,以更好地理解复杂天然岩石的大规模反应。因此,为了实现合成制造的材料和天然地质材料之间的相似性,本研究专注于仅具有两个组成部分(石膏粉末和浸润的3D印刷物体的纳米级力学表征。设计/方法/方法研究方法包括通过分立元件方法(DEM)的数值模拟结合数值模拟的纳米endentation技术。发现四种典型的载荷 - 位移曲线是从总测试点的纳米indentation鉴定了3D印刷石膏岩样的典型弹性塑性行为。通过基于能量的方法计算诸如杨氏模量和硬度等机械参数,并且观察到阳性相关性。发现渗透剂对大多数样品纳米机械行为而不是石膏颗粒的渗透剂负责,因此预期控制Macroscale属性。这决定了弹性模量数据的解卷积和聚类。在DEM中的颗粒流动建模用于模拟多孔介质中的纳米凸缘过程,从而产生岩石相似的机械行为。原创性/值结果显示了实验和仿真结果之间的匹配负载 - 位移响应,这验证了纳米级3D印刷石膏岩石力学行为的可信度。最后,使用差分有效介质理论用于高档纳米狭窄结果,以宏观机械性能,为MultiScale提供了对地质力学建模的洞察力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号