...
首页> 外文期刊>Critical Reviews in Plant Sciences >Trigenomic bridges for Brassica improvement.
【24h】

Trigenomic bridges for Brassica improvement.

机译:改善芸芸芸苔的三基因组桥梁。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We introduce and review Brassica crop improvement via trigenomic bridges. Six economically important Brassica species share three major genomes (A, B, and C), which are arranged in diploid (AA, BB, and CC) and allotetraploid (AABB, AACC, and BBCC) species in the classical triangle of U. Trigenomic bridges are Brassica interspecific hybrid plants that contain the three genomes in various combinations, either triploid (ABC), unbalanced tetraploid (e.g., AABC), pentaploid (e.g., AABCC) or hexaploid (AABBCC). Through trigenomic bridges, Brassica breeders can access all the genetic resources in the triangle of U for genetic improvement of existing species and development of new agricultural species. Each of the three Brassica genomes occurs in several species, where they are distinguished as subgenomes with a tag to identify the species of origin. For example, the A subgenome in B. juncea (2n=AABB) is denoted as Aj and the A subgenome in B. napus (2n=AACC) as An. Trigenomic bridges have been used to increase genetic diversity in allopolyploid Brassica crop species, such as a new-type B. napus with subgenomes from B. rapa (Ar) and B. carinata (Cc). Recently, trigenomic bridges from several sources have been crossed together as the 'founders' of a potentially new allohexaploid Brassica species (AABBCC). During meiosis in a trigenomic bridge, crossovers are expected to form between homologous chromosomes of related subgenomes (for example Ar and An), but cross-overs may also occur between non-homologous chromosomes (for example between A and C genome chromosomes). Irregular meiosis is a common feature of new polyploids, and any new allotetraploid or allohexaploid Brassica genotypes derived from a trigenomic bridge must achieve meiotic stability through a process of diploidisation. New sequencing technologies, at the genomic and epigenomic level, may reveal the genetic and molecular basis of diploidization, and accelerate selection of stable allotetraploids or allohexaploids. Armed with new genetic resources from trigenomic bridges, Brassica breeders will be able to improve yield and broaden adaptation of Brassica crops to meet human demands for food and biofuel, particularly in the face of abiotic constraints caused by climate change.Digital Object Identifier http://dx.doi.org/10.1080/07352689.2011.615700
机译:我们通过三基因组桥介绍并回顾了芸苔对作物的改良作用。六个具有经济意义的芸苔属物种共有三个主要基因组(A,B和C),分别排列在二倍体(AA,BB和CC)和异源四倍体(AABB,AACC和BBCC)物种中。 U. Trigenomic bridges的经典三角形是芸苔属种间杂种植物,它们包含三个基因组的各种组合,它们是三倍体(ABC),不平衡四倍体(例如AABC),五倍体(例如AABCC)或六倍体(AABBCC)。通过三基因组桥,芸苔育种者可以访问U三角形中的所有遗传资源,从而对现有物种进行遗传改良并开发新的农业物种。甘蓝的三个基因组中的每个基因组都存在于几种物种中,它们被区分为带有标记的亚基因组,以识别起源物种。例如, B中的A亚基因组。 juncea (2 n = AABB)表示为A j , B中的A亚基因组。 napus (2 n = AACC)作为A n 。三基因组桥已被用于增加同种多倍体芸苔属作物品种,例如新型 B的遗传多样性。甘蓝型油菜,其中有来自 B的亚基因组。 rapa (A r )和 B。 carinata (C c )。最近,作为潜在新异源六倍体芸苔属(AABBCC)物种的“奠基人”,来自多个来源的三基因组桥已经交汇在一起。在三基因组桥的减数分裂过程中,预计在相关亚基因组的同源染色体(例如A r 和A n )之间会形成交叉,但是在非同源染色体(例如A和C基因组染色体之间)。不规则的减数分裂是新的多倍体的共同特征,并且源自三基因组桥的任何新的异源四倍体或同种六倍体芸苔属基因型必须通过二倍体化过程实现减数分裂稳定性。在基因组和表观基因组水平上的新测序技术可能揭示二倍体化的遗传和分子基础,并加速稳定的异源四倍体或异源六倍体的选择。借助三基因组桥梁中的新遗传资源,甘蓝育种者将能够提高甘蓝作物的产量并扩大其适应性,以满足人类对粮食和生物燃料的需求,尤其是面对气候变化造成的非生物限制的原因。数字对象标识符http://dx.doi.org/10.1080/07352689.2011.615700

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号