首页> 外文期刊>Nitric oxide: Biology and chemistry >Regulation of endothelial barrier integrity by redox-dependent nitric oxide signaling: Implication in traumatic and inflammatory brain injuries
【24h】

Regulation of endothelial barrier integrity by redox-dependent nitric oxide signaling: Implication in traumatic and inflammatory brain injuries

机译:氧化氧依赖性一氧化氮信号的内皮阻挡完整性调节:创伤性和炎症性脑损伤中的含义

获取原文
获取原文并翻译 | 示例
           

摘要

Nitric oxide (NO) synthesized by eNOS plays a key role in regulation of endothelial barrier integrity but underlying cell signaling pathway is not fully understood at present. Here, we report opposing roles of two different redox-dependent NO metabolites; peroxynitrite (ONOO-) vs. S-nitrosoglutathione (GSNO), in cell signaling pathways for endothelial barrier disruption. In cultured human brain microvessel endothelial cells (hBMVECs), thrombin induced F-actin stress fiber formation causes barrier disruption via activating eNOS. Thrombin induced eNOS activity participated in cell signaling (e.g. RhoA and calcium influx mediated phosphorylation of myosin light chain) for F-actin stress fiber formation by increasing ONOO- levels. On the other hand, thrombin had no effect on intracellular levels of S-nitrosoglutathione (GSNO), another cellular NO metabolite. However, exogenous GSNO treatment attenuated the thrombin-induced cell signaling pathways for endothelial barrier disruption, thus suggesting the role of a shift of NO metabolism (GSNO vs. ONOO-) toward ONOO- synthesis in cell signaling for endothelial barrier disruption. Consistent with these in vitro studies, in animal models of traumatic brain injury and experimental autoimmune encephalomyelitis (EAE), ONOO- scavenger treatment as well as GSNO treatment were effective for attenuation of BBB leakage, edema formation, and CNS infiltration of mononuclear cells. Taken together, these data document that eNOS-mediated NO production and following redox-dependent NO metabolites (ONOO- vs. GSNO) are potential therapeutic target for CNS microvascular disease (traumatic and inflammatory) pathologies.
机译:eNOS合成的一氧化氮(NO)在调节内皮阻挡完整性中起关键作用,但目前尚未完全理解下面的细胞信号传导途径。在这里,我们报告了两种不同的氧化还原依赖性没有代谢物的反对作用;过氧硝酸盐(ONOO-)与S-硝基葡萄球菌(GSNO),在细胞信号传导途径中,用于内皮阻隔破坏。在培养的人脑微血管内皮细胞(HBMVECs)中,凝血酶诱导的F型肌动蛋白应力纤维形成通过活化烯来引起阻隔破坏。凝血酶诱导的eNOS活性参与细胞信号传导(例如RHOA和钙流入介导的肌球蛋白轻链磷酸化),通过增加onoo-含量来形成F-actin应激纤维形成。另一方面,凝血酶对细胞内水平的S-Nitrosogluthathione(GSNO),另一种细胞没有代谢物没有影响。然而,外源性GSNO治疗减弱了凝血酶诱导的细胞信号传导途径,用于内皮阻隔破坏,因此表明在内皮屏障中断的细胞信号传导中,没有代谢(GSNO对on.OO-)的变化对onoo合成的作用。与这些体外研究一致,在创伤性脑损伤和实验性自身免疫性脑脊髓炎(EAE)的动物模型中,onoo-清除治疗以及GSNO治疗对于衰减BBB泄漏,水肿形成和单核细胞的CNS浸润是有效的。携带的这些数据文件,即eNos介导的没有生产和依赖于氧化还原的代谢物(Onoo-vs.gsno)是CNS微血管疾病(创伤性和炎症)病理学的潜在治疗靶标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号