...
首页> 外文期刊>Laser physics letters >Effects of the helical magnetic wiggler on a laser beam interacting with a lattice of metallic nanoparticles: plasmonic and body waves
【24h】

Effects of the helical magnetic wiggler on a laser beam interacting with a lattice of metallic nanoparticles: plasmonic and body waves

机译:螺旋磁性摇摆在与金属纳米颗粒晶格相互作用的激光束上的影响:等离子体和体波

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, the influence of a helical magnetic wiggler on the nonlinear interaction of a laser beam with a lattice of metallic nanoparticles is investigated. Coupling of the static magnetic field of the wiggler to the field of the laser wave, and therefore a change in the electric field intensity of the pumped wave, leads to the formation of a nonlinear force in the interaction region. As a consequence, the nonlinear force enhances the plasmonic oscillations of the electronic cloud of each nanoparticle causing electron density modulation, which improves the self-focusing property of the laser beam. Using a perturbative method, the nonlinear dispersion plasmonic and body waves are obtained from the interaction of a laser beam with a lattice of nanoparticles in the presence of a helical magnetic wiggler. We investigate the effects of nanoparticle size, their separations and wiggler field strength on the evolution of the transverse profile of the laser beam in both incident linearly polarized and circularly polarized waves. The numerical results indicate that in the linear polarization for all branches of plasmonic and body waves (except for the low-frequency middle branch), laser bandwidth decreases with increasing nanoparticle separation length, which improves the self-focusing property. Moreover, with enhancement of the normalized wiggler field strength, the laser amplitude transverse profile for all branches of plasmonic and body waves (except for the low-frequency middle branch) decreases, which leads to beam focusing. For left and right circular polarization, it is found that with an increase in the nanoparticle separation length, the laser amplitude transverse profile for all branches of plasmonic and body waves (except for the low-frequency middle branch) increases, which leads to beam defocusing. Furthermore, with enhancement of the normalized wiggler field strength, the laser amplitude transverse profile decreases for body waves and the low-frequency lower branch of plasmonic waves, which gives rise to the beam focusing, whereas it increases for the low-frequency middle and upper branches of plasmonic waves, which leads to the beam defocusing.
机译:在该研究中,研究了螺旋磁性Wiggler对具有金属纳米粒子晶格的激光束的非线性相互作用的影响。悬垂器的静磁场与激光波的场的耦合,因此泵浦波的电场强度的变化导致相互作用区域中的非线性力的形成。因此,非线性力增强了每个纳米颗粒的电子云的等离子体振荡,导致电子密度调制,这改善了激光束的自对焦性。使用扰动方法,在存在螺旋磁性摇摆器存在下,从激光束的相互作用获得非线性分散等离子体和体波。我们研究了纳米粒子尺寸,它们的分离和Wiggler场强对入射线性偏振和圆偏振波的激光束横向曲线的演变的影响。数值结果表明,在等离子体和体波的所有分支的线性偏振中(除了低频中间分支除外),随着纳米粒子分离长度的增加,激光带宽减小,从而改善了自对焦性。此外,随着归一化的Wiggler场强的增强,用于等离子体和体波的所有分支的激光幅度横曲线(除了低频中间分支除外)降低,这导致光束聚焦。对于左和右圆极化,发现纳米粒子分离长度的增加,用于所有等离子体和体波的所有分支的激光幅度横向曲线(低频中间分支除外)增加,这导致梁散焦。此外,通过提高归一化的Wiggler场强度,激光幅度横向曲线对于体波和等离子体波的低频下部分支减小,这引起光束聚焦,而低频中间和上部增加等离子体波的分支,导致梁散焦。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号