...
首页> 外文期刊>Lab on a chip >A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions
【24h】

A biomimetic microfluidic model to study signalling between endothelial and vascular smooth muscle cells under hemodynamic conditions

机译:血流动力学条件下内皮和血管平滑肌细胞研究信号传导的仿生微流体模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Cell signalling and mechanics influence vascular pathophysiology and there is an increasing demand for in vitro model systems that enable examination of signalling between vascular cells under hemodynamic conditions. Current 3D vessel wall constructs do not recapitulate the mechanical conditions of the native tissue nor do they allow examination of cell-cell interactions under relevant hemodynamic conditions. Here, we describe a 3D microfluidic chip model of arterial endothelial and smooth muscle cells where cellular organization, composition and interactions, as well as the mechanical environment of the arterial wall are mimicked. The hemodynamic EC-VSMC-signalling-on-a-chip consists of two parallel polydimethylsiloxane (PDMS) cell culture channels, separated by a flexible, porous PDMS membrane, mimicking the porosity of the internal elastic lamina. The hemodynamic EC-VSMC-signalling-on-a-chip allows co-culturing of human aortic endothelial cells (ECs) and human aortic vascular smooth muscle cells (VSMCs), separated by a porous membrane, which enables EC-VSMC interaction and signalling, crucial for the development and homeostasis of the vessel wall. The device allows real time cell imaging and control of hemodynamic conditions. The culture channels are surrounded on either side by vacuum channels to induce cyclic strain by applying cyclic suction, resulting in mechanical stretching and relaxation of the membrane in the cell culture channels. The blood flow is mimicked by creating a flow of medium at the EC side. Vascular cells remain viable during prolonged culturing, exhibit physiological morphology and organization and make cell-cell contact. During dynamic culturing of the device with a shear stress of 1-1.5 Pa and strain of 5-8%, VSMCs align perpendicular to the given strain in the direction of the flow and EC adopt a cobblestone morphology. To our knowledge, this is the first report on the development of a microfluidic device, which enables a co-culture of interacting ECs and VSMCs under hemodynamic conditions and presents a novel approach to systematically study the biological and mechanical components of the intimal-medial vascular unit.
机译:细胞信号和力学影响血管病理生理学,并且对体外模型系统的需求越来越大,可以在血液动力学条件下检查血管细胞之间的信号传导。目前的3D血管壁构建体不会重新承载天然组织的机械条件,也不允许在相关血液动力学条件下检查细胞细胞相互作用。在这里,我们描述了动脉内皮和平滑肌细胞的3D微流体芯片模型,其中细胞组织,组成和相互作用以及动脉壁的机械环境模仿。血流动力学EC-VSMC-信号壳体由两个平行的聚二甲基硅氧烷(PDMS)细胞培养通道组成,通过柔性多孔PDMS膜分离,模拟内部弹性薄层的孔隙率。血流动力学EC-VSMC-信号盘允许共同培养人主动脉内皮细胞(ECS)和人主动脉血管平滑肌细胞(VSMC),由多孔膜分开,这使得EC-VSMC相互作用和信号传导,对船墙的开发和稳态至关重要。该装置允许实时细胞成像和对血液动力学条件的控制。培养通道通过真空通道包围在任一侧,以通过施加循环抽吸诱导循环菌株,导致细胞培养通道中的膜的机械拉伸和松弛。通过在EC侧产生介质的流动来模仿血流。血管细胞在长期培养期间仍然可行,表现出生理形态和组织,并使细胞 - 细胞接触。在剪切应力的动态培养1-1.5Pa和5-8%的菌株中,VSMC在流动方向上垂直于给定的应变,EC采用鹅卵石形态。据我们所知,这是关于微流体装置发展的第一个报告,它能够在血流动力学条件下进行相互作用的EC和VSMC的共同培养,并提出了一种系统地研究了内侧内侧血管的生物和机械组分的新方法单元。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号