首页> 外文期刊>Lab on a chip >Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media
【24h】

Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media

机译:用于研究复杂多孔介质中多相流动的双孔隙度和双深度微汇流

获取原文
获取原文并翻译 | 示例
       

摘要

Silicon-based microfluidic devices, so-called micromodels in this application, are particularly useful laboratory tools for the direct visualization of fluid flow revealing pore-scale mechanisms controlling flow and transport phenomena in natural porous media. Current microfluidic devices with uniform etched depths, however, are limited when representing complex geometries such as the multiple-scale pore sizes common in carbonate rocks. In this study, we successfully developed optimized sequential photolithography to etch micropores (1.5 to 21 mu m width) less deeply than the depth of wider macropores (> 21 mu m width) to improve the structural realism of an existing single-depth micromodel with a carbonate-derived pore structure. Surface profilimetry illustrates the configuration of the dual-depth dual-porosity micromodel and is used to estimate the corresponding pore volume change for the dual-depth micromodel compared to the equivalent uniform-or single-depth model. The flow characteristics of the dual-depth dual-porosity micromodel were characterized using micro-particle image velocimetry (mu-PIV), relative permeability measurements, and pore-scale observations during imbibition and drainage processes. The mu-PIV technique provides insights into the fluid dynamics within microfluidic channels and relevant fluid velocities controlled predominantly by changes in etching depth. In addition, the reduction of end-point relative permeability for both oil and water in the new dual-depth dual-porosity micromodel compared to the equivalent single-depth micromodel implies more realistic capillary forces occurring in the new dual-depth micromodel. Throughout the imbibition and drainage experiments, the flow behaviors of single-and dual-depth micromodels are further differentiated using direct visualization of the trapped non-wetting phase and the preferential mobilization of the wetting phase in the dual-depth micromodel. The visual observations agree with the relative permeability results. These findings indicate that dual-porosity and dual-depth micromodels have enhanced physical realism that is pertinent to oil recovery processes in complex porous media.
机译:在本申请中,基于硅基微流体装置,所谓的微摩德是特别有用的实验室工具,用于直接可视化流体流动,揭示了控制天然多孔介质中的流量和运输现象的孔隙尺度机制。然而,当代表诸如碳酸盐岩中常见的多标尺孔径诸如多标尺孔径的复杂几何形状时,具有均匀蚀刻深度的电流微流体装置。在这项研究中,我们成功地开发了优化的顺序光刻,以蚀刻微孔(1.5至21μm宽度)比较宽的大麦克波雷(> 21 mu m宽度)的深度深入地深深地,以改善现有单深度微模型的结构真实感碳酸盐衍生的孔结构。表面分体说明了与等效均匀或单深度模型相比,使用双深度双孔隙率微模型的构造,并用于估计双深度微模的相应孔体积变化。使用微粒图像速度(MU-PIV),相对渗透率测量和吸收过程中的相对渗透率测量和孔隙尺度观测表征双深度双孔隙率微偶据的流动特性。 MU-PIV技术为微流体通道内的流体动力学提供了流体动力学的见解,以及通过蚀刻深度的变化主要控制的相关流体速度。此外,与等效单深度微模型相比,新的双深度双孔隙率微模型中的油和水的终点相对渗透率的降低意味着在新的双深度微模中发生的更现实的毛细力。在整个吸收和排水实验中,使用捕获的非润湿相的直接可视化和润湿相中的润湿相中的直接可视化进一步分化单次和双深度微模浆浆露的流量。视觉观察结果与相对渗透率结果一致。这些发现表明,双孔隙率和双深度微汇流具有增强的物理现实主义,其与复杂多孔介质中的储油过程有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号