...
首页> 外文期刊>Lab on a chip >3D microfluidics via cyclic olefin polymer-based in situ direct laser writing
【24h】

3D microfluidics via cyclic olefin polymer-based in situ direct laser writing

机译:3D微流体通过循环烯烃聚合物的基础直接激光书写

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In situ direct laser writing (isDLW) strategies that facilitate the printing of three-dimensional (3D) nanostructured components directly inside of, and fully sealed to, enclosed microchannels are uniquely suited for manufacturing geometrically complex microfluidic technologies. Recent efforts have demonstrated the benefits of using micromolding and bonding protocols for isDLW; however, the reliance on polydimethylsiloxane (PDMS) leads to limited fluidic sealing (e.g., operational pressures < 50-75 kPa) and poor compatibility with standard organic solvent-based developers. To bypass these issues, here we explore the use of cyclic olefin polymer (COP) as an enabling microchannel material for isDLW by investigating three fundamental classes of microfluidic systems corresponding to increasing degrees of sophistication: (i) "2.5D" functionally static fluidic barriers (10-100 mu m in height), which supported uncompromised structure-tochannel sealing under applied input pressures of up to 500 kPa; (ii) 3D static interwoven microvesselinspired structures (inner diameters < 10 mu m) that exhibited effective isolation of distinct fluorescently labelled microfluidic flow streams; and (iii) 3D dynamically actuated microfluidic transistors, which comprised bellowed sealing elements (wall thickness = 500 nm) that could be actively deformed via an applied gate pressure to fully obstruct source-to-drain fluid flow. In combination, these results suggest that COP-based isDLW offers a promising pathway to wide-ranging fluidic applications that demand significant architectural versatility at submicron scales with invariable sealing integrity, such as for biomimetic organ-on-a-chip systems and integrated microfluidic circuits.
机译:原位直接激光写入(ISDLW)策略,便于将三维(3D)纳米结构部件直接印刷在内部,完全密封到封闭的微通道中的封闭式微通道是唯一适合制造几何复杂的微流体技术。最近的努力已经证明了使用微胶合和粘接方案的益处;然而,对聚二甲基硅氧烷(PDMS)的依赖性导致有限的流体密封(例如,操作压力<50-75kPa)和与标准有机溶剂基显影剂的相容性差。为了绕过这些问题,在这里,我们通过研究对应于增加的复杂程度的三种微流体系统的微流体系统,探讨循环烯烃聚合物(COP)作为ISDLW的使用:(i)“2.5d”功能静态流体屏障(10-100亩,高度),其在施加的输入压力下支撑了无与伦比的结构 - 孔密封,高达500 kPa; (ii)3D静态交织微型微型梭菌结构(内径<10μm),其具有有效分离不同的荧光标记的微流体流动流; (III)3D动态致动的微流体晶体管,其包括偏振的密封元件(壁厚= 500nm),其可以通过施加的栅极压力主动地使源极变形,以完全阻碍源极排出流体流动。组合,这些结果表明,基于COP的ISDLW为广泛的流体应用提供了有希望的途径,这些应用需要在亚微米的尺度上要求具有不变的密封完整性的显着建筑多功能性,例如用于仿生器的芯片系统和集成的微流体电路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号