...
首页> 外文期刊>Materials science & engineering, C. Materials for Biogical applications >Tunable green graphene-silk biomaterials: Mechanism of protein-based nanocomposites
【24h】

Tunable green graphene-silk biomaterials: Mechanism of protein-based nanocomposites

机译:可调谐绿色石墨烯 - 丝绸生物材料:基于蛋白质的纳米复合材料的机制

获取原文
获取原文并翻译 | 示例
           

摘要

Green graphene materials prepared by photoreduction of graphite oxide were first time blended with aqueous based silk fibroin proteins to improve the mechanical and thermal properties of silk biomaterials, and their nano composite interaction mechanism was illustrated. Powder X-ray diffraction (XRD) analysis confirmed the complete exfoliation of graphite oxide to graphene in presence of focused pulses of solar radiation. By varying the concentration of graphene (0.1 wt% to 10 wt%), a series of free standing graphene-silk films were prepared and were systematically characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and nanoindentation measurements. The homogeneity of graphene in silk as well as the thermal stability of the composite films was demonstrated by thermal gravimetric analysis (TGA) and temperature-modulated differential scanning calorimetry (TMDSC). Surprisingly, silk composite film containing only 0.5 wt% of graphene gives the highest Young's modulus of 1.65 GPa (about 5.8 times higher than the pure silk's modulus), indicating a nano-composite to micro-composite transition of silk-graphene structure occurred around this mixing ratio. This finding provided an easy approach to improve the elastic modulus and other physical properties of silk materials by adding a tiny amount of graphene sheets. Fibroblast cells studies also proved that these graphene-silk materials can significantly improve cell adhesion, growth and proliferation. This protein nanocomposite study provided a useful model to understand how to manipulate the hydrophobic-hydrophobic and polar polar interactions between high-surface-area inorganic nanomaterials and amphiphilic protein materials, which has many emerging applications in the material science and engineering, such as bio-device fabrication, drug storage and release, and tissue regeneration. (C) 2017 Elsevier B.V. All rights reserved.
机译:首先用石墨氧化物的光电氧化石墨素制备的绿色石墨烯材料与含水丝素蛋白蛋白混合以改善丝绸生物材料的机械和热性能,并示出了它们的纳米复合相互作用机理。粉末X射线衍射(XRD)分析证实了在太阳辐射的聚焦脉冲存在下石墨氧化物的完全剥离。通过改变石墨烯的浓度(0.1wt%至10wt%),制备一系列自由静态石墨烯薄膜,并通过傅里叶变换红外光谱(FTIR),扫描电子显微镜(SEM)和纳米狭窄测量系统。通过热重分析(TGA)和温度调制差示扫描量热法(TMDSC)对石墨烯和复合膜的热稳定性的均匀性以及复合膜的热稳定性。令人惊讶的是,含有0.5wt%的石墨烯的丝绸复合膜具有1.65GPa的最高模量(比纯丝的模量高约5.8倍),表明纳米复合物与丝绸 - 石墨烯结构的微复合转变发生在此周围混合比例。这一发现提供了一种简单的方法,可以通过添加微量石墨烯片来改善丝网材料的弹性模量和其他物理性质。成纤维细胞研究还证明,这些石墨烯丝材料可以显着提高细胞粘附,生长和增殖。该蛋白质纳米复合材料研究提供了一种有用的模型,以了解如何操纵高表面积无机纳米材料和两亲蛋白质材料之间的疏水性 - 疏水和极性相互作用,这些纳米材料和两亲蛋白质材料在材料科学和工程中具有许多新兴应用,例如生物 - 器件制造,药物储存和释放,以及组织再生。 (c)2017 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号