...
【24h】

Application of the gene editing tool, CRISPR-Cas9, for treating neurodegenerative diseases

机译:基因编辑工具,CRISPR-CAS9治疗神经变性疾病的应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Abstract: Increased accumulation of transcribed protein from the damaged DNA and reduced DNA repair capability contributes to numerous neurological diseases for which effective treatments are lacking. Gene editing techniques provide new hope for replacing defective genes and DNA associated with neurological diseases. With advancements in using such editing tools as zinc finger nucleases (ZFNs), meganucleases, and transcription activator-like effector nucleases (TALENs), etc., scientists are able to design DNA-binding proteins, which can make precise double-strand breaks (DSBs) at the target DNA. Recent developments with the CRISPR-Cas9 gene-editing technology has proven to be more precise and efficient when compared to most other gene-editing techniques. Two methods, non-homologous end joining (NHEJ) and homology-direct repair (HDR), are used in CRISPR-Cas9 system to efficiently excise the defective genes and incorporate exogenous DNA at the target site. In this review article, we provide an overview of the CRISPR-Cas9 methodology, including its molecular mechanism, with a focus on how in this gene-editing tool can be used to counteract certain genetic defects associated with neurological diseases. Detailed understanding of this new tool could help researchers design specific gene editing strategies to repair genetic disorders in selective neurological diseases. Highlights ? Basic mechanisms and application of the CRISPR-Cas9 system are described. ? Prospects of CRISPR-Cas9 system to model and treat neurodegenerative diseases have been discussed. ? Challenges, limitations and inferences from various studies, using the CRISPR-Cas9 have been analyzed and discussed.
机译:摘要:从受损的DNA中增加转录蛋白质的累积,降低DNA修复能力有助于缺乏有效治疗的许多神经系统疾病。基因编辑技术为取代与神经疾病相关的缺陷基因和DNA提供新的希望。在使用这种编辑工具作为锌指核酸酶(ZFNS),Meganucl酶和转录活化剂样效应核酸酶(Talens)等的进步,科学家们能够设计DNA结合蛋白,这可以使得精确的双轴断裂( DSBS)在靶DNA处。与大多数其他基因编辑技术相比,近期具有CRISPR-CAS9基因编辑技术的发展已经被证明是更精确和有效的。两种方法,非同源终止(NHEJ)和同源性直接修复(HDR)用于CRISPR-CAS9系统,以有效地消除缺陷基因并在靶位部位掺入外源性DNA。在本综述文章中,我们提供了CRISPR-CAS9方法的概述,包括其分子机制,重点是本基因编辑工具中的方式,可用于抵消与神经疾病相关的某些遗传缺陷。详细了解这一新工具可以帮助研究人员设计特定的基因编辑策略,以修复选择性神经疾病中的遗传障碍。强调 ?描述了CRISPR-CAS9系统的基本机制和应用。还讨论了CRISPR-CAS9系统对模型和治疗神经退行性疾病的前景。还分析并讨论了各种研究的挑战,限制和推论,并讨论了使用CRISPR-CAS9。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号