首页> 外文期刊>Neural Networks: The Official Journal of the International Neural Network Society >Neural dynamics of saccadic and smooth pursuit eye movement coordination during visual tracking of unpredictably moving targets
【24h】

Neural dynamics of saccadic and smooth pursuit eye movement coordination during visual tracking of unpredictably moving targets

机译:不可预测移动目标在视觉跟踪期间扫视和光滑追踪眼运动协调的神经动力学

获取原文
获取原文并翻译 | 示例
           

摘要

How does the brain coordinate saccadic and smooth pursuit eye movements to track objects that move in unpredictable directions and speeds? Saccadic eye movements rapidly foveate peripheral visual or auditory targets, and smooth pursuit eye movements keep the fovea pointed toward an attended moving target. Analyses of tracking data in monkeys and humans reveal systematic deviations from predictions of the simplest model of saccade-pursuit interactions, which would use no interactions other than common target selection and recruitment of shared motoneurons. Instead, saccadic and smooth pursuit movements cooperate to cancel errors of gaze position and velocity, and thus to maximize target visibility through time. How are these two systems coordinated to promote visual localization and identification of moving targets? How are saccades calibrated to correctly foveate a target despite its continued motion during the saccade? The neural model proposed here answers these questions. Modeled interactions encompass motion processing areas MT, MST, FPA, DLPN and NRTP; saccade planning and execution areas FEF, LIP, and SC; the saccadic generator in the brain stem; and the cerebellum. Simulations illustrate the model's ability to functionally explain and quantitatively simulate anatomical, neurophysiological and behavioral data about coordinated saccade-pursuit tracking.
机译:大脑如何协调扫视和平稳的追求眼球运动,以跟踪以不可预测的方向和速度移动的物体?扫视眼球运动迅速进行外围视觉或听觉目标,并且平稳的追求眼睛运动保持FOVEA指向出席的移动目标。猴子和人类跟踪数据分析揭示了与扫视追求相互作用最简单模型的预测的系统偏差,这些偏差不会使用除共同的常见目标选择和共用运动神经元的常见目标选择和招募的相互作用。相反,扫视和平滑追踪运动配合以取消凝视位置和速度的误差,从而通过时间最大化目标可见性。这两个系统如何协调,以促进视觉本地化和识别移动目标?尽管在扫视期间继续运动,但扫视扫描如何正确地进行目标?这里提出的神经模型回答了这些问题。建模交互包括运动处理区域MT,MST,FPA,DLPN和NRTP;扫视规划和执行区FEF,唇和SC;脑干中的扫视发电机;和小脑。模拟说明了模型在功能上解释和定量模拟有关协调扫视跟踪的解剖学,神经生理和行为数据的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号