...
首页> 外文期刊>Nanoscale Horizons >Photothermal actuated origamis based on graphene oxide-cellulose programmable bilayers
【24h】

Photothermal actuated origamis based on graphene oxide-cellulose programmable bilayers

机译:基于石墨烯氧化物 - 纤维素可编程双层的光热致动折聚物

获取原文
获取原文并翻译 | 示例
           

摘要

The design and construction of 3D architectures enabled by stimuli-responsive soft materials can yield novel functionalities for next generation soft-bodied actuating devices. Apart from additive manufacturing processes, origami inspired technology offers an alternative approach to fabricate 3D actuators from planar materials. Here we report a class of near-infrared (NIR) responsive 3D active origamis that deploy, actuate and transform between multistable structural equilibria. By exploiting the nonlinear coefficient of thermal expansion (CTE) of graphene oxide (GO), graphene oxide/ethylene cellulose (GO/EC) bilayers are readily fabricated to deliver precise origami structure control, and rapid low-temperature-triggered photothermal actuation. Complexity in 3D shapes is produced through heterogeneously patterning GO domains on 2D EC thin films, which allows us to customize 3D architectures that adapt to various robotic functions. The strategy also enables the construction of material systems possessing naturally inaccessible properties, such as remotely controlled mechanical metamaterials with auxetic behavior and bionic flowers with a rapid blooming rate. Harnessing deformability with multiple degrees of freedom (DOF) upon light irradiation, this work leads to breakthroughs in the design and implementation of shape-morphing functions with soft origamis.
机译:刺激响应软材料实现的3D架构的设计和构造可以为下一代软体致动装置产生新颖的功能。除了添加剂制造过程之外,Origami启发技术提供了一种替代方法,可以从平面材料制造3D执行器。在这里,我们报告了一类近红外(NIR)响应式3D主动折稗,可以在多际结构均衡之间进行部署,致动和转换。通过利用石墨烯(GO)的热膨胀(CTE)的非线性膨胀系数,易于制造石墨烯/乙烯纤维素(GO / EC)双层以提供精确的折纸结构控制,以及快速的低温触发的光热致动。 3D形状中的复杂性通过2D EC薄膜上的异构图案化域来产生,这使我们能够自定义适应各种机器人功能的3D架构。该策略还使得能够建造具有自然无法访问的特性的材料系统,例如具有快速盛开率的辅助行为和仿生花的远程控制的机械超材料。在光线照射时利用多程度的自由度(DOF)来利用易变形性,这项工作导致设计和实施具有柔软折纸的形状变形功能的设计和实现。

著录项

  • 来源
    《Nanoscale Horizons》 |2020年第4期|共9页
  • 作者单位

    School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore.;

    School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore.;

    School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号