首页> 外文期刊>Nanoscale Horizons >Nano-size porous carbon spheres as a high-capacity anode with high initial coulombic efficiency for potassium-ion batteries
【24h】

Nano-size porous carbon spheres as a high-capacity anode with high initial coulombic efficiency for potassium-ion batteries

机译:纳米尺寸多孔碳球作为高容量阳极,具有高初始库仑效率的钾离子电池

获取原文
获取原文并翻译 | 示例
       

摘要

Hard carbon materials have been recognized as a promising family of anode materials for potassium ion batteries (PIBs), but their practical application is severely hindered due to the inferior initial coulombic efficiency (ICE) and low capacity. Herein, we report our findings in simultaneously improved potassium storage capacity and ICE through the design of nano-size and porous structure and the appropriate selection of electrolytes. Benefiting from the high specific surface area, stable electrode|electrolyte interface, and fast potassium ion and electron transfer, the optimized electrode exhibits a high ICE of up to 68.2% and an outstanding reversible capacity of 232.6 mA h g~(_1) at 200 mA g~(-1) In particular, superior cycling stability of 165.2 mA h gz~(_1) at 1000 mA g~(-1) and 129.7 mA h g~(-1) at 2000 mA g~(_1) can be retained after 1500 cycles, respectively. Quantitative analysis reveals that this optimized structure leads to an enhanced surface-controlled contribution, resulting in fast potassiation kinetics and electronic|ionic conductivities, which are regarded as essential features for potassium storage. Our findings in this work provide an efficient strategy to significantly improve potassium storage capacity while maintaining a high ICE for hard carbon electrodes.
机译:硬碳材料已被认为是钾离子电池(PIB)的有前途的阳极材料系列,但由于初始初始库仑效率(冰)和低容量,它们的实际应用严重阻碍。 Herein, we report our findings in simultaneously improved potassium storage capacity and ICE through the design of nano-size and porous structure and the appropriate selection of electrolytes.优化电极稳定的电极界面和快速钾离子和电子转移的优势,优化电极显示出高达68.2%的高冰,232.6 mA Hg〜(_1)的出色可逆容量为200 mA G〜(1)特别是在2000 mA g〜(_1)的1000 mA g〜(-1)和129.7 mA Hg〜(-1)的优异循环稳定性。分别在1500次循环后。定量分析表明,这种优化的结构导致了增强的表面控制贡献,导致快速的钾动力学和电子导电性,其被认为是钾储存的基本特征。我们在这项工作中的调查结果提供了有效的策略,以显着提高钾储存能力,同时保持硬碳电极的高冰。

著录项

  • 来源
    《Nanoscale Horizons》 |2020年第5期|共9页
  • 作者

    Hehe Zhang; Chong Luo; Hanna He;

  • 作者单位

    Department of Materials Science and Engineering College of Materials Xiamen University Xiamen Fujian 361005 China.;

    Department of Materials Science and Engineering College of Materials Xiamen University Xiamen Fujian 361005 China.;

    Hunan Provincial Key Laboratory of Chemical Power Sources College of Chemistry and Chemical Engineering Central South University Changsha 410083 P. R. China.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;工程材料学;
  • 关键词

  • 入库时间 2022-08-20 04:26:19

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号