首页> 外文期刊>Nature nanotechnology >Gate-based single-shot readout of spins in silicon
【24h】

Gate-based single-shot readout of spins in silicon

机译:基于门的单次拍摄硅的旋转

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Electron spins in silicon quantum dots provide a promising route towards realizing the large number of coupled qubits required for a useful quantum processor(1-7). For the implementation of quantum algorithms and error detection(8-10), qubit measurements are ideally performed in a single shot, which is presently achieved using on-chip charge sensors, capacitively coupled to the quantum dots(11). However, as the number of qubits is increased, this approach becomes impractical due to the footprint and complexity of the charge sensors, combined with the required proximity to the quantum dots(12). Alternatively, the spin state can be measured directly by detecting the complex impedance of spin-dependent electron tunnelling between quantum dots(13-15). This can be achieved using radiofrequency reflectometry on a single gate electrode defining the quantum dot itself(5-19), significantly reducing the gate count and architectural complexity, but thus far it has not been possible to achieve single-shot spin readout using this technique. Here, we detect single electron tunnelling in a double quantum dot and demonstrate that gate-based sensing can be used to read out the electron spin state in a single shot, with an average readout fidelity of 73%. The result demonstrates a key step towards the readout of many spin qubits in parallel, using a compact gate design that will be needed for a large-scale semiconductor quantum processor.
机译:硅量子点中的电子旋转提供了实现有用量子处理器(1-7)所需的大量耦合Qubits的有希望的路线。为了实现量子算法和错误检测(8-10),可以理想地在单个镜头中进行Qubit测量,其目前使用片上电荷传感器来实现,电容耦合到量子点(11)。然而,随着额度的数量增加,由于电荷传感器的占地面积和复杂性,这种方法变得不切实际,与量子点(12)的所需邻近相结合。或者,通过检测量子点(13-15)之间的旋转相关电子隧道的复杂阻抗,可以直接测量旋转状态。这可以在单个栅电极上使用射频反射测量法在定义量子点本身(5-19)上,显着降低栅极计数和架构复杂性,但到目前为止还没有使用这种技术实现单次旋转读数。这里,我们检测双量子点中的单电子隧穿,并证明可以使用基于栅极的感测来在单次射击中读出电子旋转状态,平均读出保真度为73%。结果通过将大规模半导体量子处理器所需的紧凑型栅极设计并行地朝着许多自旋Qubits读出许多旋转Qubits的关键步骤。

著录项

  • 来源
    《Nature nanotechnology》 |2019年第5期|共7页
  • 作者单位

    Univ New South Wales Ctr Quantum Computat &

    Commun Technol Sch Elect Engn &

    Telecommun Sydney NSW Australia;

    Univ New South Wales Ctr Quantum Computat &

    Commun Technol Sch Elect Engn &

    Telecommun Sydney NSW Australia;

    Univ Sydney ARC Ctr Excellence Engn Quantum Syst Sch Phys Sydney NSW Australia;

    Univ New South Wales Ctr Quantum Computat &

    Commun Technol Sch Elect Engn &

    Telecommun Sydney NSW Australia;

    Univ New South Wales Ctr Quantum Computat &

    Commun Technol Sch Elect Engn &

    Telecommun Sydney NSW Australia;

    Univ Cambridge Cavendish Lab Cambridge England;

    Hitachi Cambridge Lab Cambridge England;

    Univ New South Wales Ctr Quantum Computat &

    Commun Technol Sch Elect Engn &

    Telecommun Sydney NSW Australia;

    Univ New South Wales Ctr Quantum Computat &

    Commun Technol Sch Elect Engn &

    Telecommun Sydney NSW Australia;

    Univ Sydney ARC Ctr Excellence Engn Quantum Syst Sch Phys Sydney NSW Australia;

    Univ New South Wales Ctr Quantum Computat &

    Commun Technol Sch Elect Engn &

    Telecommun Sydney NSW Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号