...
首页> 外文期刊>Microbes and Environments >Microbial Diversity in Actively Forming Iron Oxides from Weathered Banded Iron Formation Systems
【24h】

Microbial Diversity in Actively Forming Iron Oxides from Weathered Banded Iron Formation Systems

机译:从风化带状铁形成系统的积极形成氧化铁的微生物多样性

获取原文
获取原文并翻译 | 示例
           

摘要

The surface crust that caps highly weathered banded iron formations (BIFs) supports a unique ecosystem that is a post-mining restoration priority in iron ore areas. Geochemical evidence indicates that biological processes drive the dissolution of iron oxide minerals and contribute to the ongoing evolution of this duricrust. However, limited information is available on present-day biogeochemical processes in these systems, particularly those that contribute to the precipitation of iron oxides and, thus, the cementation and stabilization of duricrusts. Freshly formed iron precipitates in water bodies perched on cangas in Karijini National Park, Western Australia, were sampled for microscopic and molecular analyses to understand currently active microbial contributions to iron precipitation in these areas. Microscopy revealed sheaths and stalks associated with iron-oxidizing bacteria. The iron-oxidizing lineages Sphaerotilus, Sideroxydans, and Pedomicrobium were identified in various samples and Leptothrix was common in four out of five samples. The iron-reducing bacteria Anaeromyxobacter dehalogens and Geobacter lovleyi were identified in the same four samples, with various heterotrophs and diverse cyanobacteria. Given this arid, deeply weathered environment, the driver of contemporary iron cycling in Karijini National Park appears to be iron-reducing bacteria, which may exist in anaerobic niches through associations with aerobic heterotrophs. Overall oxidizing conditions and Leptothrix iron-oxidizers contribute to net iron oxide precipitation in our sampes, rather than a closed biogeochemical cycle, which would result in net iron oxide dissolution as has been suggested for canga caves in Brazil. Enhancements in microbial iron oxide dissolution and subsequent reprecipitation have potential as a surface-crust-ecosystem remediation strategy at mine sites.
机译:盖帽高度风化的带状铁形成(BIFS)的表面外壳支持独特的生态系统,即铁矿石区域的开采后恢复优先级。地球化学证据表明,生物过程驱动氧化铁矿物的溶解,并有助于这种杜兰氏菌的持续演变。然而,有限的信息可在这些系统中的当前生物地质化化学过程中获得,特别是那些有助于氧化铁沉淀的那些,因此,杜兰氏菌的胶结和稳定性。新鲜成型的铁沉淀在西澳大利亚岛西澳洲国家公园的水体中栖息的水体,被取样进行微观和分子分析,以了解目前在这些地区的铁沉淀的主动微生物贡献。显微镜显微镜显示与铁氧化细菌相关的护套和茎。在各种样品中鉴定铁氧化谱系Sphaerotilus,Sideroxydans和甲状腺纤维素,并且在五个样品中有四种样品中常见。在相同的四个样品中鉴定了冰冷的细菌厌氧杆菌和Geobacter Lovylyi,具有各种异质和不同的蓝菌。鉴于这一干旱的干旱,深刻的风化环境,卡里吉尼国家公园的当代铁骑行的驾驶员似乎是冰冷的细菌,这可能存在于厌氧地层的厌氧型杂种口。总氧化条件和甲壳质氧化氧化剂有助于我们的速度中的氧化铁沉淀,而不是封闭的生物地球化学循环,这将导致氧化铁溶解,这是在巴西Canga洞穴的建议。微生物氧化铁溶解的增强和随后的再沉淀具有矿位点的表面地壳 - 生态系统修复策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号