首页> 美国卫生研究院文献>Microbes and Environments >Microbial Diversity in Actively Forming Iron Oxides from Weathered Banded Iron Formation Systems
【2h】

Microbial Diversity in Actively Forming Iron Oxides from Weathered Banded Iron Formation Systems

机译:从风化带状铁形成系统中主动形成氧化铁的微生物多样性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The surface crust that caps highly weathered banded iron formations (BIFs) supports a unique ecosystem that is a post-mining restoration priority in iron ore areas. Geochemical evidence indicates that biological processes drive the dissolution of iron oxide minerals and contribute to the ongoing evolution of this duricrust. However, limited information is available on present-day biogeochemical processes in these systems, particularly those that contribute to the precipitation of iron oxides and, thus, the cementation and stabilization of duricrusts. Freshly formed iron precipitates in water bodies perched on cangas in Karijini National Park, Western Australia, were sampled for microscopic and molecular analyses to understand currently active microbial contributions to iron precipitation in these areas. Microscopy revealed sheaths and stalks associated with iron-oxidizing bacteria. The iron-oxidizing lineages Sphaerotilus, Sideroxydans, and Pedomicrobium were identified in various samples and Leptothrix was common in four out of five samples. The iron-reducing bacteria Anaeromyxobacter dehalogens and Geobacter lovleyi were identified in the same four samples, with various heterotrophs and diverse cyanobacteria. Given this arid, deeply weathered environment, the driver of contemporary iron cycling in Karijini National Park appears to be iron-reducing bacteria, which may exist in anaerobic niches through associations with aerobic heterotrophs. Overall oxidizing conditions and Leptothrix iron-oxidizers contribute to net iron oxide precipitation in our sampes, rather than a closed biogeochemical cycle, which would result in net iron oxide dissolution as has been suggested for canga caves in Brazil. Enhancements in microbial iron oxide dissolution and subsequent reprecipitation have potential as a surface-crust-ecosystem remediation strategy at mine sites.
机译:覆盖高度风化的带状铁层(BIF)的地壳支持独特的生态系统,这是铁矿石地区开采后恢复工作的重点。地球化学证据表明,生物过程推动了氧化铁矿物质的溶解,并促进了粉尘的不断演化。但是,有关这些系统中当今生物地球化学过程的信息有限,特别是那些有助于铁氧化物沉淀并因此胶结和稳定粉煤灰的过程。在澳大利亚西部的Karijini国家公园中,栖息在高加索沼气中的水体中新形成的铁沉淀物被取样进行微观和分子分析,以了解当前活跃的微生物对这些地区铁沉淀的贡献。显微镜检查显示与铁氧化细菌相关的鞘和茎。铁氧化谱系Sphaerotilus,Sideroxydans和Pedomicrobium在各种样品中均得到鉴定,而Leptothrix在5个样品中有4个是常见的。在相同的四个样品中鉴定出了铁还原细菌脱卤素厌氧杆菌和洛维氏杆菌,具有各种异养菌和不同的蓝细菌。在这种干旱,深度风化的环境下,卡里尼尼国家公园当代铁循环的驱动力似乎是还原铁细菌,通过与需氧异养菌的结合,它们可能存在于厌氧生态位中。总体氧化条件和Leptothrix铁氧化剂有助于我们样品中的净氧化铁沉淀,而不是封闭的生物地球化学循环,这将导致净氧化铁溶解,正如巴西的Canga洞穴所建议的那样。微生物氧化铁溶解的增强和随后的再沉淀具有作为矿场表面地壳生态系统修复策略的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号