首页> 外文期刊>Nano Energy >Edge-rich MoS2 grown on edge-oriented three-dimensional graphene glass for high-performance hydrogen evolution
【24h】

Edge-rich MoS2 grown on edge-oriented three-dimensional graphene glass for high-performance hydrogen evolution

机译:以边缘为导向的三维石墨烯玻璃上升的边缘MOS2,用于高性能氢气进化

获取原文
获取原文并翻译 | 示例
           

摘要

The more exposures of the photocatalytically active sites are one of the essential elements to achieve high photocatalytic efficiency. Through the architecture designs, we have proposed an edge-rich MoS2 nanoarray grown on an edge-oriented three-dimensional (3D) graphene (termed as the 3D-graphene/E-MoS2) via chemical vapor deposition. Unlike the two-dimensional (2D) graphene, the highly conductive and transparent 3D graphene film has been grown at oblique angles on glass (i.e., a graphene glass), providing the large exposed surface area for the loading of more photocatalysts. Then, the abundant photocatalytically active sites can be achieved in the subsequently deposited edge-rich MoS2 nanoarrays, which are significantly beneficial for photocatalytic hydrogen production. The theoretical and experimental studies have revealed the new finding in the substantial improvements of both optical and electrical properties based on the geometrically designed 3D-graphene/E-MoS2 structures. Optically, the excellent light absorption (wavelength range: 300-800 nm) is observed, which is attributed to the favorable energy band for the efficient charge transfer between the electronically interconnected graphene and MoS2, and orientation of the MoS2 crystal face array. Electrically, the edge-rich MoS2 grown on the edge-oriented 3D graphene glass can achieve the optimized charge transport along the 2D vector plane from MoS2 layers to graphene. Consequently, the new hybrid nanostructures exhibit excellent performance as an effective photocatalyst for hydrogen generation from photocatalytic water splitting. The measured hydrogen evolution rate (2232.7 mu mol/g/h) under white-light illumination is one of the highest among those photocatalysts reported to date.
机译:光催化活性位点的曝光越多是实现高光催化效率的基本元件之一。通过架构设计,我们通过化学气相沉积提出了在边缘定向的三维(3D)石墨烯(称为3D-石墨烯/ E-MOS2)上生长的富富富有的MOS2纳米脉珠。与二维(2D)石墨烯不同,高导电和透明的3D石墨烯膜已经在玻璃(即石墨烯玻璃)上以倾斜角度生长,提供大的暴露表面积以加载更多的光催化剂。然后,可以在随后的富沉积的边缘的MOS2纳米阵列中实现丰富的光催化位点,这对于光催化氢气产生显着有益。理论和实验研究揭示了基于几何设计的3D-石墨烯/ E-MOS2结构的光学和电性能大大改进的新发现。光学地,观察到优异的光吸收(波长范围:300-800nm),其归因于有利的能带,用于在电子互连的石墨烯和MOS2之间的有效电荷转移,以及MOS2晶面阵列的取向。在线化的3D石墨烯玻璃上生长的富边缘MOS2可以从MOS2层到石墨烯沿着2D向量平面实现优化的电荷传输。因此,新的杂交纳米结构表现出优异的性能作为来自光催化水分解的有效光催化剂。在白光照射下测量的氢进化速率(2232.7μmol/ g / h)是迄今为止报告的光催化剂中最高的速度。

著录项

  • 来源
    《Nano Energy》 |2019年第2019期|共10页
  • 作者单位

    Northwestern Polytech Univ &

    Shaanxi Joint Lab Gr Sch Mat Sci &

    Engn Ctr Nano Energy Mat State Key Lab Solidificat Proc Xian 710072 Shaanxi Peoples R China;

    Northwestern Polytech Univ &

    Shaanxi Joint Lab Gr Sch Mat Sci &

    Engn Ctr Nano Energy Mat State Key Lab Solidificat Proc Xian 710072 Shaanxi Peoples R China;

    Northwestern Polytech Univ &

    Shaanxi Joint Lab Gr Sch Mat Sci &

    Engn Ctr Nano Energy Mat State Key Lab Solidificat Proc Xian 710072 Shaanxi Peoples R China;

    Anhui Univ Minist Educ Key Lab Intelligent Comp &

    Signal Proc Hefei 230039 Anhui Peoples R China;

    Xidian Univ Sch Microelect Wide Bandgap Semicond Technol Disciplines State K Xian 710071 Shaanxi Peoples R China;

    Northwestern Polytech Univ &

    Shaanxi Joint Lab Gr Sch Mat Sci &

    Engn Ctr Nano Energy Mat State Key Lab Solidificat Proc Xian 710072 Shaanxi Peoples R China;

    NPU QMUL JRI AMAS Xian 710072 Shaanxi Peoples R China;

    Northwestern Polytech Univ &

    Shaanxi Joint Lab Gr Sch Mat Sci &

    Engn Ctr Nano Energy Mat State Key Lab Solidificat Proc Xian 710072 Shaanxi Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 能源与动力工程;
  • 关键词

    MoS2; Graphene; Hydrogen evolution; Optical effect; Electrical effect;

    机译:MOS2;石墨烯;氢气进化;光学效应;电气效果;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号