...
首页> 外文期刊>Nano Energy >Insights into the mechanism of metal-polymer contact electrification for triboelectric nanogenerator via first-principles investigations
【24h】

Insights into the mechanism of metal-polymer contact electrification for triboelectric nanogenerator via first-principles investigations

机译:通过一致原理调查探讨摩擦纳米料的金属聚合物接触电气化机理

获取原文
获取原文并翻译 | 示例

摘要

Surface micro/nano structures and materials modification are the major methods to enhance the output performance of triboelectric nanogenerator (TENG). However, the microcosmic mechanism on how they take effect has not been clear yet. Herein, the typical material pair Al-PTFE of TENG is taken as the example to study the mechanism of metal-polymer contact electrification via first-principles investigations and provide theoretical basis for the optimized design of TENG.We demonstrate that the interface barrier of the contact materials is the more fundamental parameter related to contact electrification, rather than the effective work function difference which has been thought to be proportional to the amount of charge transfer. The relationship between charge transfer and interface distance is also investigated. We confirm that charge transfer is significantly affected by the stress on the contact region, and it can even occur without contact. Based on the results, we propose that the surface micro/nano structures design on TENG should aim at making the contact regions in an appropriate stress state instead of only increasing the contact area, and improving the specific surface areas in the effective range of contact electrification via nanostructures for generating extra charge transfer freely.In order to provide theoretical basis for surface modification on contact materials which has been little studied, the direction, driving force and the intrinsic cause of charge transfer are investigated. It is demonstrated that the electrons acceptor is the LUMO (lowest unoccupied molecular orbital) on PTFE surface, and the driving force of charge transfer is the electrostatic attraction generated by the electrons acceptor. In addition, the key role and intrinsic mechanism of the interface chemical bond in PTFE is studied. We propose that the fundamental goal of chemical modification on contact materials should be to lower the LUMO energy level on the surface of electron accep
机译:表面微/纳米结构和材料改性是增强摩擦纳米料(滕)的输出性能的主要方法。然而,尚未清楚地尚未清楚的微观机制。在此,腾腾的典型材料对Al-PTFE作为研究金属 - 聚合物接触电气化的机理通过第一原理调查,为滕的优化设计提供理论依据。我们证明了界面屏障的界面屏障接触材料是与接触电气化相关的更基本的参数,而不是有效的工作功能差异被认为与电荷量的量成比例。还研究了电荷转移和接口距离之间的关系。我们确认电荷转移受到接触区域的压力的显着影响,甚至可以在没有接触的情况下发生。基于结果,我们提出了滕表面微/纳米结构设计应旨在以适当的应力状态制造接触区域,而不是仅增加接触面积,并在有效的接触电气范围内改善特定表面区域通过纳米结构,用于自由产生额外的电荷转移。为了为近似研究的接触材料提供表面改性的理论基础,研究了指导,驱动力和电荷转移的内在原因。结果证明,电子受体是PTFE表面上的LUMO(最低的未占用分子轨道),并且电荷转移的驱动力是由电子受体产生的静电吸引力。此外,研究了PTFE中界面化学键的关键作用和内在机理。我们提出,在接触材料上的化学改性的基本目标应该是降低电子Accep表面上的Lumo能量水平

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号