...
首页> 外文期刊>Nano Energy >High-performance dopant-free conjugated small molecule-based hole-transport materials for perovskite solar cells
【24h】

High-performance dopant-free conjugated small molecule-based hole-transport materials for perovskite solar cells

机译:用于Perovskite太阳能电池的高性能掺杂的无掺杂共轭小分子的孔输送材料

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

AbstractHole-transport materials are a crucial element influencing the efficiency, hysteresis, and stability of perovskite solar cells (PSCs). Current state-of-the-art hole-transport materials require additional oxidizing dopants to achieve sufficient hole-transport properties; however, these dopants are environmentally harmful while also deteriorating the stability of PSCs. The development of high-performance dopant-free hole-transport materials is an important goal in the field of PSCs. In this work, we developed novel conjugated small-molecule based dopant-free hole-transport materials for PSCs containing di(1-benzothieno)[3,2-b:2′,3′-d]pyrrole (DBTP) as a core unit. These small molecule hole-transport materials achieved higher hole mobility and interfacial charge transfer rates than optimally doped spiro-OMeTAD, the current-state-of-the-art hole-transport material. A low-temperature PSC device using a dopant-free small molecule hole-transport material displayed a PCE of 18.09% with negligible hysteresis, higher than a device using doped spiro-OMeTAD (17.82%). Notably, the hydrophobic nature of our dopant-free small molecule hole-transport materials afforded excellent air-storage stability of low-temperature PSCs (81% retention after 33 days), whereas the doped spiro-OMeTAD based PSCs rapidly degraded under identical conditions (< 1% retention after 33 days).Graphical abstract
机译:<![cdata [ 抽象 空穴传输材料是影响钙钛矿太阳能电池(PSC)的效率,滞后和稳定性的关键因素。目前最先进的空穴传输材料需要额外的氧化掺杂剂来实现足够的空穴传输性能;然而,这些掺杂剂是环境有害的,同时也劣化了PSC的稳定性。高性能掺杂孔输送材料的发展是PSC领域的重要目标。在这项工作中,我们开发了一种用于PSC的新型共轭小分子的掺杂剂孔输送材料,用于含有DI(1-苯并噻吩)[3,2-B:2',3'-D]吡咯(DBTP)作为核心单元。这些小分子空穴传输材料比最佳掺杂的螺旋-MORODAD,电流最新的空穴传输材料达到更高的空穴迁移率和界面电荷转移率。使用不含掺杂剂的小分子空穴传输材料的低温PSC器件显示为18.09%的PCE,滞后可忽略不计,比使用掺杂刺激醚的装置高(17.82%)。值得注意的是,我们掺杂的不含小分子空穴传输材料的疏水性质得到了低温PSC的卓越空气储气稳定性(33天后81%的保留),而基于掺杂的螺纹醚基的PSC在相同的条件下快速降解( 33天后保留1%)。 图形摘要

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号