首页> 外文期刊>Nano Energy >Design of continuous built-in band bending in self-supported CdS nanorod-based hierarchical architecture for efficient photoelectrochemical hydrogen production
【24h】

Design of continuous built-in band bending in self-supported CdS nanorod-based hierarchical architecture for efficient photoelectrochemical hydrogen production

机译:基于CDS Nanorod的分层架构连续内置带弯曲的设计,用于高效光电化学氢气生产

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

AbstractThe ever-increasing desire for clean and renewable energy has triggered the development of novel materials for photoelectrochemical (PEC) water splitting. However, elaborate design of photoanode materials with high light-harvesting capability, high charge-separation efficiency and long-term stability for converting solar energy into hydrogen fuel is highly challenged. Herein, we fabricated the self-supported gradient oxygen-doped three-dimensional (3D) CdS branched nanorod array (Grad-O CdS), in which a continuous built-in band bending structure was constructed by gradually oxygen doping. The kinetically-confined anion exchange under non-equilibrium condition was confirmed to be critical to achieve the gradient doping. The obtained Grad-O CdS exhibited a large photocurrent density of 6.0 ± 0.1mAcm?2at 0.4Vvs.RHE, which could be maintained for over 42h. Such excellent performance and stability can be attributed to the efficient separation of charge carriers, which benefits from its continuous built-in band bending caused by oxygen doping, and enhanced light-harvesting capability derived from the narrowing band gap and 3D hierarchical structure. This gradient doping strategy provides a valuable guideline for the design of efficient photoelectrode materials for the conversion of solar energy.Graphical abstractA
机译:<![cdata [ 抽象 不断增加的清洁和可再生能源的欲望引发了光电化学(PEC)水分裂新型材料的开发。然而,精细设计具有高射击能力,高电荷分离效率和用于将太阳能转化为氢燃料的高电荷分离效率和长期稳定性的光电码材料。在此,我们制造了自支撑梯度氧掺杂的三维(3D)CDS支链纳米峰阵列(GRAD-O CD),其中通过逐渐氧气掺杂构建连续内置带弯曲结构。确认非平衡条件下的动力学阴离子交换是达到梯度掺杂至关重要的。所获得的GRAD-O CD具有6.0±0.1macm的大的光电流密度Δ2 0.4V vs。 rhe,可以保持42小时。这种优异的性能和稳定性可归因于电荷载流子的有效分离,这有利于由氧气掺杂引起的连续内置带弯曲,并增强了来自狭窄带隙和3D层次结构的光收获能力。这种梯度掺杂策略提供了用于转换太阳能转换的有效光电电极材料的有价值指南。 图形抽象 a

著录项

  • 来源
    《Nano Energy》 |2018年第2018期|共8页
  • 作者单位

    Department of Chemistry School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering;

    Department of Chemistry School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering;

    Department of Chemistry School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering;

    Department of Chemistry School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering;

    Department of Chemistry School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 能源与动力工程;
  • 关键词

    Built-in band bending; Hierarchical architecture; Gradient element doping; Photoelectrocatalysis; Self-template;

    机译:内置频段弯曲;分层架构;梯度元素掺杂;光电催化;自我模板;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号