...
首页> 外文期刊>Nano Energy >Well-designed Te/SnS2/Ag artificial nanoleaves for enabling and enhancing visible-light driven overall splitting of pure water
【24h】

Well-designed Te/SnS2/Ag artificial nanoleaves for enabling and enhancing visible-light driven overall splitting of pure water

机译:精心设计的TE / SNS 2 / AG人工纳米,用于实现和增强可见光驱动的纯净的整体分裂

获取原文
获取原文并翻译 | 示例

摘要

Abstract To produce hydrogen and oxygen from photocatalytic overall splitting of pure water provides a promising green route to directly convert solar energy to clean fuel. However, the design and fabrication of high-efficiency photocatalyst is challenging. Here we present that by connecting different nanostructures together in a rational fashion, components that cannot individually split water into H2 and O2 can work together as efficient photocatalyst with high solar-to-hydrogen (STH) energy conversion efficiency and avoid the use of any sacrificial reagent. Specifically, Te/SnS2/Ag artificial nanoleaves (ANLs) consist of ultrathin SnS2 nanoplates grown on Te nanowires and decorated with numerous Ag nanoparticles. The appropriate band structure of Te/SnS2 p-n junctions and the surface plasmon resonance of Ag nanoparticles synergistically enhance the quantum yield and separation efficiency of electron-hole pairs. As a result, Te/SnS2/Ag ANLs enable visible-light driven overall water-splitting without any sacrificial reagent and exhibit high H2 and O2 production rates of 332.4 and 166.2μmolh?1, respectively. Well-preserved structure after long-term measurement indicates its high stability. It represents a feasible approach for direct H2 production from only sunlight, pure water, and rationally-designed ANL photocatalysts.
机译:<![cdata [ 抽象 从光催化整体分裂生产氢气和氧气的纯水,提供了有希望的绿色途径,直接将太阳能转换为清洁燃料。然而,高效光催化剂的设计和制造是挑战性的。在这里,我们介绍了以合理的方式将不同的纳米结构连接在一起,不能将水分分成的部件分成H 2 和O 2 可作为高效的光催化剂一起使用高太阳能 - 氢气(STH)能量转换效率,避免使用任何牺牲试剂。具体来说,TE / SNS 2 / AG人工纳米(ANL)由超薄SNS 2 在TE纳米线上生长的纳米板,用无数Ag纳米粒子装饰。 Te / Sn的合适带结构 2 p-n结和Ag纳米粒子的表面等离子体共振协同增强电子孔对的量子产率和分离效率。结果,TE / SNS 2 / AG ANLS使可见光驱动的整个水分裂无关,没有任何牺牲试剂和表现出高H 2> 2 和O 2 生产率为332.4和166.2 μmol h ?1 。长期测量后保存完好的结构表明其高稳定性。它代表了直接H 2 生产从阳光,纯水和合理设计的ANL光催化剂的生产。

著录项

  • 来源
    《Nano Energy 》 |2017年第2017期| 共7页
  • 作者单位

    Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University;

    Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University;

    Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University;

    Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University;

    Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Soochow University;

    Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University;

    Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University;

    Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University;

    Department of Interdisciplinary of Physics and Chemistry Sungkyunkwan University;

    Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University;

    Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Institute of Functional Nano and Soft Materials (FUNSOM) Soochow University;

    Department of Interdisciplinary of Physics and Chemistry Sungkyunkwan University;

    Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University;

    Key Laboratory of Mesoscopic Chemistry of MOE School of Chemistry and Chemical Engineering Nanjing University;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 能源与动力工程 ;
  • 关键词

    Overall water splitting; Visible-light driven; Artificial nanoleaves; P-n junctions; Surface plasmon resonance enhancement;

    机译:整体水分裂;可见光驱动;人造纳米;P-N结;表面等离子体共振增强;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号