首页> 外文期刊>Nano Energy >Effects of heat transfer and the membrane thermal conductivity on the thermally nanofluidic salinity gradient energy conversion
【24h】

Effects of heat transfer and the membrane thermal conductivity on the thermally nanofluidic salinity gradient energy conversion

机译:传热与膜导热率对热纳米流体盐度梯度能量转换的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Originating from advances in nanofabrication, functional materials have been developed to construct bioinspired or mimic nanochannels for efficient nanofluidic energy conversion. In previous studies regarding nanofluidic energy conversion, the material thermal conductivity has been never taken into consideration, however, which shall be addressed with transmembrane temperature difference applied. Thermal conductivities of widely used bulk materials for fabricating nanopores vary from 0 to 120 W/(m center dot K). Heat transfer occurs both in the liquid solution and solid membrane, impacting trans-channel solution temperature distribution and ion transportation, and yielding counterintuitive phenomena. Under positive temperature differences, the electric power shifts from inhibition to promotion as the membrane thermal conductivity increases. Larger membrane thermal conductivity evens temperature distribution in the nanochannel, weakening ion aggregations or depletions, which result in degraded electric power improvement under a negative temperature difference and upgraded power enhancement under a positive one. At a temperature difference of 30K, the electric power is enhanced by 56.22% for a thin PET membrane (length = 50 nm) under the negative temperature difference. If the membrane thermal conductivity can be well tuned to nearly thermal insulation, the electric power can be enhanced by 120.07%. To step further, we proposed a criterion for membrane selection based on thermal conductivities in the thermally nanofluidic energy conversion: For thick membranes, materials of large thermal conductivity with a positive temperature difference are preferred for obvious power and energy efficiency enhancement. For thin membranes, materials of small thermal conductivity with a negative temperature difference are appealing. These findings reveal the importance of a long-overlooked factor, membrane thermal conductivity, in nanofluidic energy harvesting and can serve as a guidance for selecting appropriate membrane materials and developing high-performance nanofluidic power devices.
机译:源自纳米制备的进展,已经开发了功能性材料,用于构建生物悬浮或模拟纳米的纳米,以获得有效的纳米流体能量转化。在先前关于纳米流体能量转换的研究中,从未考虑过材料的导热率,其应通过施加的跨膜温度差来解决。用于制造纳米孔的广泛使用的散装材料的热导体从0到120W /(M中心点K)变化。热传递在液体溶液和固体膜中发生,影响反式通道溶液温度分布和离子运输,并产生违反直觉现象。在正温差异下,随着膜导热率的增加,电力从抑制到促进。较大的膜导热率为纳米通道,弱化离子聚集或耗尽中的温度分布,这导致在负温差下的电力改善和升级的电力增强下的正电力提高。在30K的温度差,在负温度差下薄的PET膜(长度= 50nm)增强电力56.22%。如果膜导热率可以很好地调整到几乎绝热,则可以提高电力120.07%。为了进一步,我们提出了基于热纳米流体能量转换中的热导体的膜选择的标准:对于厚膜,对于明显的功率和能效增强,优选具有正温差的大导热率的大的导热率。对于薄膜,具有负温差的小导热率的材料是吸引人的。这些发现揭示了长忽略的因子,膜导热系数在纳米流体能量收集中的重要性,并且可以作为选择合适的膜材料和开发高性能纳米流体动力装置的指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号