...
首页> 外文期刊>Nano Energy >Chemomechanical interplay of layered cathode materials undergoing fast charging in lithium batteries
【24h】

Chemomechanical interplay of layered cathode materials undergoing fast charging in lithium batteries

机译:锂电池中快速充电的层状阴极材料的化学力学相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

Morphological defects contribute to chronic and acute failures of batteries. The development of these morphological defects entails the multiscale chemo-mechanical coupling associated with internal mechanical stress. The mechanical stress, caused by anisotropic structural, chemical and state of charge (SOC) heterogeneities, is released through crack formation, undermining the continuous diffusion pathways of electrons and ions and creating fresh surfaces for electrode-electrolyte side reactions. The understanding of chemomechanical interplay has remained at the descriptive level, thus, the quantification or model to fingerprint these processes is highly desired. Herein, we systematically investigate the mesoscale morphological defects within LiNi0.6Mn0.2Co0.2O2 secondary particles that have gone through fast-charging conditions. With the advanced synchrotron X-ray tomography, we nondestructively pierce the internal volume of secondary particles and quantify the morphological outcomes of the crack formation, such as porosity and internal surface area. We then develop a numerical model to predict the crack-induced diffusion deterrent of electrons and lithium ions. The mismatch between the local ionic and electronic conductivity can lead to highly heterogeneous SOC distribution in secondary particles, which exponentially deteriorates as the current density increases. Our incisive investigation of chemomechanical interplay and fast-charging can inform a knowledge base to accelerate the discovery of advanced materials that are resilient against chemomechanical failures.
机译:形态缺陷有助于电池的慢性和急性故障。这些形态缺陷的发展需要与内部机械应力相关的多尺度化学机械耦合。由各向异性结构,化学和电荷状态(SOC)异质性引起的机械应力通过裂缝形成释放,破坏电子和离子的连续扩散途径,并为电极电解质副反应产生新鲜表面。对化学机械相互作用的理解保持在描述级别,因此,非常需要将量化或指纹模型进行这些过程。在此,我们系统地研究了通过快速充电条件的LINI0.6MN0.2CO0.2O2二级颗粒内的Mescly形态缺陷。通过先进的同步旋流X射线断层扫描,我们无损地刺穿了次级粒子的内部体积,并量化了裂缝形成的形态结果,例如孔隙率和内表面积。然后,我们开发一个数值模型以预测电子和锂离子的裂缝引起的扩散延伸。当电流密度的增加时,局部离子和电子电导率之间的错配可导致次级颗粒中的高度异质SOC分布。我们对化学机械相互作用和快速充电的敏锐调查可以通知知识库,以加速对抵抗化学力学故障的先进材料的发现。

著录项

  • 来源
    《Nano Energy》 |2018年第2018期|共10页
  • 作者单位

    Nanjing Univ Sci &

    Technol Sch Elect &

    Opt Engn Nanjing 210094 Jiangsu Peoples R China;

    Virginia Tech Dept Chem Blacksburg VA 24061 USA;

    Virginia Tech Dept Chem Blacksburg VA 24061 USA;

    Chinese Acad Sci Inst Phys Beijing Natl Lab Condensed Matter Phys Beijing 100190 Peoples R China;

    SLAC Natl Accelerator Lab Stanford Synchrotron Radiat Lightsource Menlo Pk CA 94025 USA;

    Nanjing Univ Sci &

    Technol Sch Elect &

    Opt Engn Nanjing 210094 Jiangsu Peoples R China;

    SLAC Natl Accelerator Lab Stanford Synchrotron Radiat Lightsource Menlo Pk CA 94025 USA;

    Purdue Univ Sch Mech Engn W Lafayette IN 47906 USA;

    Chinese Acad Sci Inst Phys Beijing Natl Lab Condensed Matter Phys Beijing 100190 Peoples R China;

    Virginia Tech Dept Chem Blacksburg VA 24061 USA;

    SLAC Natl Accelerator Lab Stanford Synchrotron Radiat Lightsource Menlo Pk CA 94025 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 能源与动力工程;
  • 关键词

    Cathode; Li-ion battery; Crack; Transmission; X-ray microscopy; Fast charging; Chemomechanical interplay;

    机译:阴极;锂离子电池;裂缝;传输;X射线显微镜;快速充电;化学力学相互作用;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号