...
首页> 外文期刊>CrystEngComm >High-sensitivity and self-driven photodetectors based on Ge-CdS core-shell heterojunction nanowires via atomic layer deposition
【24h】

High-sensitivity and self-driven photodetectors based on Ge-CdS core-shell heterojunction nanowires via atomic layer deposition

机译:基于原子层沉积的Ge-CdS核壳异质结纳米线的高灵敏度自驱动光电探测器

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Core-shell p-n heterojunction nanowires (NWs) hold great promise for optoelectronic applications due to the large effective junction area and minimized carrier recombination. However, the rational design and synthesis of core-shell heterojunction NWs are hindered by the complex fabrication process and the potential damage to core NWs during shell deposition. Herein, we demonstrated the fabrication of Ge-CdS core-shell heterojunction NWs via a facile atomic layer deposition (ALD) technique. The ALD technique allowed the conformal deposition of polycrystalline CdS shells on single-crystalline Ge NWs with high uniformity and controllable thickness. The heterojunction NWs exhibited excellent diode characteristics, with a pronounced photoresponse under light illumination. Significantly, owing to the existence of a built-in electric field, the heterojunctions could serve as self-driven photodetectors, with a high photosensitivity of 18 000%, which is remarkably much better than previous reports on Ge NW photodetectors. The complementary bandgaps of Ge and CdS also ensured that the device had a capability for broadband detection from visible to infrared light. This study represents an important advance in fabricating core-shell heterojunction NWs for high-performance optoelectronic applications.
机译:核-壳p-n异质结纳米线(NWs)由于有效结面积大和载流子重组最小而在光电应用方面具有广阔的前景。然而,核-壳异质结NW的合理设计和合成受到复杂的制造过程和壳沉积过程中对核NW的潜在损害的阻碍。在这里,我们演示了通过原子层沉积(ALD)技术制造的Ge-CdS核壳异质结NWs。 ALD技术允许多晶CdS壳的共形沉积在具有高均匀性和可控厚度的单晶Ge NW上。异质结NW表现出优异的二极管特性,在光照下具有明显的光响应。值得注意的是,由于存在内置电场,异质结可以用作自驱动式光电探测器,具有18 000%的高光敏性,这比以前有关Ge NW光电探测器的报道要好得多。 Ge和CdS的互补带隙也确保了该器件具有从可见光到红外光的宽带检测能力。这项研究代表了制造用于高性能光电应用的核-壳异质结NW的重要进展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号