首页> 外文期刊>CrystEngComm >Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) as a new local dissolution kinetic probe: application to salicylic acid dissolution in aqueous solution
【24h】

Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) as a new local dissolution kinetic probe: application to salicylic acid dissolution in aqueous solution

机译:跳跃式间歇接触扫描电化学显微镜(HIC-SECM)作为新型局部溶解动力学探针:在水杨酸在水溶液中的溶解中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Dissolution kinetics of the (110) face of salicylic acid in aqueous solution is determined by hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) using a 2.5 mu m diameter platinum ultramicroelectrode (UME). The method operates by translating the probe UME towards the surface at a series of positions across the crystal and inducing dissolution via the reduction of protons to hydrogen, which titrates the weak acid and promotes the dissolution reaction, but only when the UME is close to the crystal. Most importantly, as dissolution is only briefly and transiently induced at each location, the initial dissolution kinetics of an as-grown single crystal surface can be measured, rather than a surface which has undergone significant dissolution (pitting), as in other techniques. Mass transport and kinetics in the system are modelled using finite element method simulations which allows dissolution rate constants to be evaluated. It is found that the kinetics of an 'as-grown' crystal are much slower than for a surface that has undergone partial bulk dissolution (mimicking conventional techniques), which can be attributed to a dramatic change in surface morphology as identified by atomic force microscopy (AFM). The 'as-grown' (110) surface presents extended terrace structures to the solution which evidently dissolve slowly, whereas a partially dissolved surface has extensive etch features and step sites which greatly enhance dissolution kinetics. This means that crystals such as salicylic acid will show time-dependent dissolution kinetics (fluxes) that are strongly dependent on crystal history, and this needs to be taken into account to fully understand dissolution.
机译:水杨酸(110)面在水溶液中的溶解动力学是通过使用直径为2.5μm的铂超微电极(UME)跳跃式间歇接触扫描电化学显微镜(HIC-SECM)来确定的。该方法的工作原理是:在整个晶体的一系列位置处将探针UME移向表面,并通过将质子还原为氢来诱导溶解,从而使弱酸滴定并促进溶解反应,但仅当UME接近于UME时才起作用。水晶。最重要的是,由于溶解只是在每个位置短暂而短暂地引起的,因此可以测量生长中的单晶表面的初始溶解动力学,而不是像其他技术一样可以测量已经发生显着溶解(点蚀)的表面。使用有限元方法模拟对系统中的物质传输和动力学进行建模,从而可以评估溶出速率常数。发现“生长中的”晶体的动力学要比经历了部分整体溶解(类似于常规技术)的表面慢得多,这可以归因于原子力显微镜所鉴定的表面形态的巨大变化。 (AFM)。 “生长中的”(110)表面在溶液中呈现出扩展的平台结构,显然溶解缓慢,而部分溶解的表面具有广泛的刻蚀特征和台阶部位,极大地增强了溶解动力学。这意味着诸如水杨酸之类的晶体将显示出与时间有关的溶解动力学(助熔剂),而动力学依赖于晶体的历史,因此需要充分考虑其溶解性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号