...
首页> 外文期刊>Biochimica et biophysica acta. Reviews on cancer >The flexible evolutionary anchorage-dependent Pardee's restriction point of mammalian cells. How its deregulation may lead to cancer
【24h】

The flexible evolutionary anchorage-dependent Pardee's restriction point of mammalian cells. How its deregulation may lead to cancer

机译:哺乳动物细胞的柔性进化锚定依赖性帕迪限制点。放松管制可能如何导致癌症

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Living cells oscillate between the two states of quiescence and division that stand poles apart in terms of energy requirements, macromolecular composition and structural organization and in which they fulfill dichotomous activities. Division is a highly dynamic and energy-consuming process that needs be carefully orchestrated to ensure the faithful transmission of the mother genotype to daughter cells. Quiescence is a low-energy state in which a cell may still have to struggle hard to maintain its homeostasis in the face of adversity while waiting sometimes for long periods before finding a propitious niche to reproduce. Thus, the perpetuation of single cells rests upon their ability to elaborate robust quiescent and dividing states. This led yeast and mammalian cells to evolve rigorous Start [L.H. Hartwell, J. Culotti, J. Pringle, B.J. Reid, Genetic control of the cell division cycle in yeast, Science 183 (1974) 46-51] and restriction (R) points [A.B. Pardee, A restriction point for control of normal animal cell proliferation, Proc. Natl. Acad. Sci. U. S. A. 71 (1974) 1286-1290], respectively, that reduce deadly interferences between the two states by enforcing their temporal insulation though still enabling a rapid transition from one to the other upon an unpredictable change in their environment. The constitutive cells of multicelled organisms are extremely sensitive in addition to the nature of their adhering support that fluctuates depending on developmental stage and tissue specificity. Metazoan evolution has entailed, therefore, the need for exceedingly flexible anchorage-dependent R points empowered to assist cells in switching between quiescence and division at various times, places and conditions in the same organism. Programmed cell death may have evolved concurrently in specific contexts unfit for the operation of a stringent R point that increase the risk of deadly interferences between the two states (as it happens notably during development). But, because of their innate flexibility, anchorage-dependent R points have also the ability to readily adjust to a changing structural context so as to give mutated cells a chance to reproduce, thereby encouraging tumor genesis. The Rb and p53 proteins, which are regulated by the two products of the Ink4a-Arf locus [C.J. Sherr, The INK4a/ARF network in tumor suppression, Nat. Rev., Mol. Cell Biol. 2 (2001) 731-737], govern separable though interconnected pathways that cooperate to restrain cyclin D- and cyclin E-dependent kinases from precipitating untimely R point transit. The expression levels of the Ink4a and Arf proteins are especially sensitive to changes in cellular shape and adhesion that entirely remodel at the time when cells shift between quiescence and division. The Arf proteins further display an extremely high translational sensitivity and can activate the p53 pathway to delay R point transit, but, only when released from the nucleolus, 'an organelle formed by the act of building a ribosome' [T. Melese, Z. Xue, The nucleolus: an organelle formed by the act of building a ribosome, Curr. Opin. Cell Biol. 7 (1995) 319-324]. In this way, the Ink4a/Rb and Arf/p53 pathways emerge as key regulators of anchorage-dependent R point transit in mammalian cells and their deregulation is, indeed, a rule in human cancers. Thus, by selecting the nucleolus to mitigate cell cycle control by the Arf proteins, mammalian cells succeeded in forging a highly flexible R point enabling them to match cell division with a growth rate imposed by factors controlling nucleolar assembling, such asnutrients and adhesion. It is noteworthy that nutrient control of critical size at Start in budding yeast has been shown recently to be governed by a nucleolar protein interaction network [P. Jorgensen, J.L. Nishikawa, B.-J. Breitkreutz, M. Tyers, Systematic identification of pathways that couple cell growth and division in yeast, Science 297 (2002) 395-400].
机译:活细胞在静止和分裂的两种状态之间振荡,这两种状态在能量需求,大分子组成和结构组织方面截然不同,并且在其中完成二分活动。分裂是一个高度动态且耗能的过程,需要精心安排以确保将母基因型忠实地传递给子代细胞。静止状态是一种低能量状态,在这种状态下,面对逆境时,细胞可能仍需艰难地维持自身的稳态,同时有时要等待很长一段时间才能找到繁殖的利基。因此,单个细胞的永存取决于它们形成鲁棒的静态和分裂状态的能力。这导致酵母和哺乳动物细胞进化出严格的起始基因。 Hartwell,J。Culotti,J。Pringle,B.J。Reid,酵母细胞分裂周期的遗传控制,Science 183(1974)46-51]和限制点(R)[A.B. Pardee,控制正常动物细胞增殖的限制点Natl。学院科学美国第71号(1974)1286-1290]通过加强它们的暂时隔离来减少两个国家之间的致命干扰,尽管在环境发生不可预测的变化时仍然能够从一个状态快速过渡到另一个状态。多细胞生物的组成细胞除了其粘附支持的性质(根据发育阶段和组织特异性而波动)外,还非常敏感。因此,后生动物的进化需要非常灵活的依赖于锚定的R点,从而能够协助细胞在同一生物体的不同时间,地点和条件之间在静止和分裂之间切换。程序性细胞死亡可能在特定情况下同时发生,不适合严格的R点操作,这增加了两个状态之间致命干扰的风险(这在开发过程中尤其明显)。但是,由于其固有的柔韧性,依赖于锚固的R点也具有很容易适应变化的结构背景的能力,从而使突变的细胞有繁殖的机会,从而促进了肿瘤的发生。 Rb和p53蛋白受Ink4a-Arf基因座两种产物的调控。 Sherr,INK4a / ARF网络在肿瘤抑制中的作用,自然。牧师细胞生物学。 2(2001)731-737],规定了可分离但相互连接的途径,这些途径共同抑制细胞周期蛋白D和细胞周期蛋白E依赖性激酶过早地沉淀R点转运。 Ink4a和Arf蛋白的表达水平对细胞形状和粘附的变化特别敏感,当细胞在静止和分裂之间移动时,它们会完全重塑。 Arf蛋白进一步显示出极高的翻译敏感性,并可以激活p53途径来延迟R点的转运,但是,只有当从核仁释放时,“通过构建核糖体的作用形成的细胞器” [T。 Melese,Z。Xue,核仁:通过构建核糖体Curr而形成的细胞器。 in细胞生物学。 7(1995)319-324]。这样,Ink4a / Rb和Arf / p53途径作为哺乳动物细胞中锚定依赖性R点转运的关键调节剂而出现,而它们的失控确实是人类癌症中的规则。因此,通过选择核仁以减轻Arf蛋白对细胞周期的控制,哺乳动物细胞成功地形成了高度灵活的R点,使它们能够与细胞分裂与控制核仁装配的因素(如营养素和粘附力)施加的生长速率相匹配。值得注意的是,最近显示出萌芽酵母开始时临界大小的营养控制受核仁蛋白相互作用网络的控制[P。 Jorgensen,J.L. Nishikawa,B.-J. Breitkreutz,M。Tyers,《系统性鉴定耦合酵母中细胞生长和分裂的途径》,科学297(2002)395-400]。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号