...
首页> 外文期刊>Kinetic & related models >UNIFORM ERROR ESTIMATES OF A FINITE DIFFERENCE METHOD FOR THE KLEIN-GORDON-SCHRODINGER SYSTEM IN THE NONRELATIVISTIC AND MASSLESS LIMIT REGIMES
【24h】

UNIFORM ERROR ESTIMATES OF A FINITE DIFFERENCE METHOD FOR THE KLEIN-GORDON-SCHRODINGER SYSTEM IN THE NONRELATIVISTIC AND MASSLESS LIMIT REGIMES

机译:在非素描和无大量限制制度中Klein-Gordon-Schrodinger系统有限差分法的均匀误差估计

获取原文
获取原文并翻译 | 示例
           

摘要

We establish a uniform error estimate of a finite difference method for the Klein-Gordon-Schrodinger (KGS) equations with two dimensionless parameters 0 gamma = 1 and 0 epsilon = 1, which are the mass ratio and inversely proportional to the speed of light, respectively. in the simultaneously nonrelativistic and massless limit regimes, i.e., gamma similar to epsilon and epsilon - 0(+), the KGS equations converge singularly to the Schrodinger-Yukawa (SY) equations. When 0 epsilon 1, due to the perturbation of the wave operator and/or the incompatibility of the initial data, which is described by two parameters alpha = 0 and beta = -1, the solution of the KGS equations oscillates in time with O(epsilon)-wavelength, which requires harsh meshing strategy for classical numerical methods. We propose a uniformly accurate method based on two key points: (i) reformulating KGS system into an asymptotic consistent formulation, and (ii) applying an integral approximation of the oscillatory term. Using the energy method and the limiting equation via the SY equations with an oscillatory potential, we establish two independent error bounds at O(h(2) + tau(2)/epsilon) and O(h(2) + tau(2) + tau epsilon(alpha)* + epsilon(1+alpha)*) with h mesh size, tau time step and alpha* = Min{1,alpha, 1+beta}. This implies that the method converges uniformly and optimally with quadratic convergence rate in space and uniformly in time at O(tau(1/3)) and O(tau(1+alpha*/2+alpha*)) for well-prepared alpha* = 1) and ill-prepared (0 = alpha* 1) initial data, respectively. Thus the e-scalability of the method is tau = O(1) and h = O(1) for 0 epsilon = 1, which is significantly better than classical methods. Numerical results are reported to confirm our error bounds. Finally, the method is applied to study the convergence rates of KGS equations to its limiting models in the simultaneously nonrelativistic and massless limit regimes.
机译:我们建立了具有两个无量纲参数0的Klein-Gordon-Schrodinger(KGS)方程的有限差分方法均匀误差估计。伽马& = 1和0& epsilon& = 1,它们分别是质量比和与光速成反比。在同时非筛选和无大量的限制方案中,即γ类似于ε和ε-& 0(+),KGS方程奇异于Schrodinger-Yukawa(SY)方程。当0& epsilon&& 1,由于波操作者的扰动和/或初始数据的不相容,这由两个参数alpha& = 0和beta& = -1,kgs方程的解决方案及时振荡o (epsilon)-00avehength,这需要古典数值方法的苛刻网格化策略。我们提出了一种基于两个关键点的均匀准确的方法:(i)将KGS系统重新重整为渐近一致的制剂,并应用振荡术语的整体近似。通过具有振荡电位的SY方程的能量方法和限制方程,我们在o(h(2)+ tau(2)/ epsilon)和o(h(2)+ tau(2)中建立两个独立的误差界限+ Tau epsilon(alpha)* +ε-ε*)具有H网格尺寸,TAU时间步和α* = min {1,alpha,1 + beta}。这意味着该方法在o(tau(1/3))和o(tau(1/3))和o(tau(1 + alpha * / 2 + alpha *)的o(tau(1 + alpha * / 2 + alpha *)中均匀地收敛均匀且最佳地收敛* = 1)分别和制备的(0& =α* 1)初始数据。因此,该方法的电子可伸缩性是Tau = O(1)和H = O(1)的0& epsilon& = 1,它比古典方法更好。据报道,数值结果证实了我们的错误界限。最后,应用该方法以研究KGS方程的收敛速率在同时非椭圆和无大量限制方案中的限制模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号