...
首页> 外文期刊>Molecular Immunology >A real-time-based in vitro assessment of the oxidative antimicrobial mechanisms of the myeloperoxidase-hydrogen peroxide-halide system
【24h】

A real-time-based in vitro assessment of the oxidative antimicrobial mechanisms of the myeloperoxidase-hydrogen peroxide-halide system

机译:基于实时的体外评估髓氧化酶 - 过氧化氢系统的氧化抗微生物机制

获取原文
获取原文并翻译 | 示例

摘要

Mammals have evolved a special cellular mechanism for killing invading microbes, which is called the phagocytosis. Neutrophils are the first phagocytosing cells that migrate into the site of infection. In these cells, hypochlorite (HOCl) and other hypohalites, generated in the myeloperoxidase (MPO)-hydrogen peroxide (H2O2) halide system is primarily responsible for oxidative killing. Here, we present a method for assessing these oxidative mechanisms in an in vitro cell-free system in a kinetical real-time-based manner by utilizing a bioluminescent bacterial probe called Escherichia con-lux. The E. coli-lux method provides a practical tool for assessing the effects of various elementary factors in the MPO-H2O2-halide system. Due to the reported versatile intracellular pH and halide concentration during the formation of the phagolysosome and respiratory burst, the antimicrobial activity of the MPO-H2O2-halide system undergoes extensive alterations. Here, we show that at a physiological pH or lower, the antimicrobial activity of MPO is high, and the system effectively enhances the H2O2-dependent oxidative killing of E. coli by chlorination. The HOCl formed in this reaction is a prominent microbe killer. During the respiratory burst, there is a shift to a more alkaline environment. At pH 7.8, the chlorinating activity of MPO was shown to be absent, and the activity of the HOCl decreased. At this higher pH, the activity of H2O2 is enhanced and high enough to kill E. coil without the participation of MPO, and the lowered chloride concentration seemed still to enhance the H2O2-dependent killing capacity.
机译:哺乳动物已经进化了一种用于杀死侵袭微生物的特殊细胞机制,称为吞噬作用。嗜中性粒细胞是第一个迁移到感染部位的吞噬细胞。在这些细胞中,次氯酸盐(HOCl)和其它防卤素,在髓氧化酶(MPO) - 过氧化氢(H 2 O 2)卤化物体系中产生主要负责氧化杀伤。在此,我们通过利用称为大肠杆菌的细菌探针,以含有大肠杆菌细菌探针在体外细胞系统中评估在体外细胞系统中的这些氧化机制的方法。 E. Coli-Lux方法提供了一种实用的工具,用于评估MPO-H2O2卤化物系统中各种基本因素的影响。由于报道的通用细胞内pH和卤化物浓度在形成吞噬细胞和呼吸爆发过程中,MPO-H 2 O 2卤化物体系的抗微生物活性经历了广泛的改变。在这里,我们表明,在生理pH或更低的情况下,MPO的抗微生物活性很高,并且系统通过氯化有效地增强了大肠杆菌的H2O2依赖性氧化杀伤。在该反应中形成的HOCL是突出的微生物杀伤。在呼吸爆发期间,存在转变为更碱性的环境。在pH 7.8,显示MPO的氯化活性,并且HOCL的活性降低。在该pH值下,H 2 O 2的活性增强,足够高以杀死E.线圈而不参与MPO,氯化物浓度降低仍然是增强H2O2依赖性杀伤能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号