首页> 外文期刊>Modelling and simulation in materials science and engineering >Microstructure-based multi-scale evaluation of fluid flow in an anthracite coal sample with partially-percolating voxels
【24h】

Microstructure-based multi-scale evaluation of fluid flow in an anthracite coal sample with partially-percolating voxels

机译:用部分渗透血管凝胶的无烟煤样煤样品中流体流动的基于微观结构的多尺度评价

获取原文
获取原文并翻译 | 示例
       

摘要

Understanding fluid flow behavior in coal is of great significance for coal-bed methane exploration. X-ray CT and image segmentation have been widely used to extract pore network and generate flow field grids for flow simulation in coal samples. However, these techniques have fundamental limitations for the multi-scale characterization of coal samples, where the sub-voxel scale details could not be resolved for millimeter scale macroscopic samples. This makes it difficult to simulate the multi-scale flow behavior of fluid transport in coal sample with varying pore scales. The primary challenge is to make connection between simulation results of different scales. In the present work, multi-scale fluid flow in an anthracite coal sample was simulated by incorporating the data-constrained modeling (DCM), molecular dynamics (MD) method and partially-percolating lattice Boltzmann method (PP-LBM). In this multi-scale simulation method, three-dimensional (3D) flow field containing multi-scale structural information of the coal sample was generated by combining DCM with multi-energy synchrotron radiation CT. Multi-scale fluid flow was simulated by PP-LBM. In PP-LBM, an effective percolation fraction parameter which represents the effective volume fraction of the fluid that contributed to the flow for the voxel was used as a bridge to connect the fluid flow pattern of sub-voxel scales and voxel scales. The effective percolation fraction of a voxel versus its porosity was derived by MD simulations at the sub-voxel size level. The 3D distribution of fluid speed in the coal sample and its permeability were obtained by this multi-scale method. The numerical results are consistent with published laboratory measurements. Our proposed approach incorporated multi-scale effects and offered a more realistic fluid transport simulation method for a coal sample with varying pore size scales from the microscopic to macroscopic level. The method would be applicable for fluid transport simul
机译:了解煤中的流体流动行为对于煤层甲烷勘探具有重要意义。 X射线CT和图像分割已被广泛用于提取孔网络并生成用于煤样中的流动场网格。然而,这些技术对煤样的多尺度表征具有基本限制,其中对于毫米级宏观样品无法解决亚体素级细节。这使得难以模拟煤样中流体输送的多尺度流动性,不同的孔鳞。主要挑战是在不同尺度的仿真结果之间进行连接。在本作工作中,通过掺入数据约束建模(DCM),分子动力学(MD)方法和部分渗透晶格Boltzmann方法(PP-LBM)来模拟无烟煤样品中的多尺度流体流动。在这种多尺度仿真方法中,通过将DCM与多能量同步辐射辐射CT组合来产生包含煤样的多尺度结构信息的三维(3D)流场。通过PP-LBM模拟多尺度流体流动。在PP-LBM中,用作有助于塑料流动的流体的有效体积分数的有效渗透级分数用作连接子体素鳞片和体素尺度的流体流动模式的桥梁。体素与其孔隙率的有效渗透级分是通过副体素尺寸水平的MD模拟来源的。通过这种多尺度方法获得煤样中的流体速度的3D分布及其渗透性。数值结果与已发表的实验室测量一致。我们所提出的方法掺入了多尺度效应,并为煤样具有更现实的流体运输模拟方法,其具有不同孔径从显微镜到宏观水平的尺寸。该方法适用于流体运输模拟

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号