首页> 外文期刊>CrystEngComm >Grain boundary engineering in electrospun ZnO nanostructures as promising photocatalysts
【24h】

Grain boundary engineering in electrospun ZnO nanostructures as promising photocatalysts

机译:电纺ZnO纳米结构中的晶界工程作为有前途的光催化剂

获取原文
获取原文并翻译 | 示例
           

摘要

Electrospun ZnO nanofibers (ZNF) have received increased attention as photocatalysts owing to their potential for incredible performance. However, uncertainty still exists in determining the correlation between grain boundaries (GBs) and photocatalytic activity. Therefore, effective thought has been put into engineering the GBs to convert ZNF into a promising photocatalyst. Herein, the obtained electrospun ZnO structures are composed of nanograins, which are connected to each other in an ordered manner. In-depth studies have revealed that the growth of nanograins severely altered the morphology of ZNF and GB areas at higher annealing temperatures ranging from 500 degrees C to 1000 degrees C. Based on the morphological features and their structural evolution, the obtained structures are named as ZnO nanofibers-1 (ZNF-1,500 degrees C), ZnO hollow tubes (ZHT, 600 degrees C), ZnO nanofibers-2 (ZNF-2, 700 degrees C), ZnO bamboo structured fibers (ZBF, 800 degrees C), ZnO segmented fibers (ZSF, 900 degrees C) and ZnO nanoparticles (ZNP, 1000 degrees C). A strong correlation between the inherent emission features of ZNF and their peak positions have been detected with the GB. The comparative degradation efficiency of methylene blue (MB) has been studied and the results showed that the ZNF-1 with highly stacked nanograins containing rich grain boundaries demonstrated similar to 6 times higher efficiency than other structures. In addition, it has been shown to have a strong effect towards the degradation of Rhodamine B (Rh B) and 4-nitro-phenol (4-NP). A critical parameter for improving the photocatalytic activity is found to be the GB mediated defects, which are proposed to be oxygen/zinc vacancies at nanograin fusion interfaces, while supposedly maintaining its fibrous structure, wherein no relationship has been drawn implying the direct domination of morphology, surface area and defect.
机译:电纺ZnO纳米纤维(ZNF)作为光催化剂由于其潜在的令人难以置信的性能而受到越来越多的关注。然而,在确定晶界(GBs)和光催化活性之间的相关性方面仍然存在不确定性。因此,在将GBs转化为ZNF成为有前途的光催化剂方面,人们进行了有效的思考。在此,所获得的电纺ZnO结构由纳米颗粒组成,它们以有序的方式彼此连接。深入研究表明,纳米颗粒的生长在500到1000摄氏度的较高退火温度下严重改变了ZNF和GB区的形态。根据形态特征及其结构演变,将获得的结构命名为ZnO纳米纤维-1(ZNF-1,500摄氏度),ZnO中空管(ZHT,600摄氏度),ZnO纳米纤维-2(ZNF-2,700摄氏度),ZnO竹结构纤维(ZBF,800摄氏度),ZnO分段纤维(ZSF,900摄氏度)和ZnO纳米颗粒(ZNP,1000摄氏度)。 ZGB的固有发射特征与其峰值位置之间存在很强的相关性。对亚甲基蓝(MB)的相对降解效率进行了研究,结果表明,具有高度堆积的纳米颗粒且含有丰富晶界的ZNF-1的效率比其他结构高出6倍。另外,已经显示出对若丹明B(Rh B)和4-硝基苯酚(4-NP)的降解具有强烈的作用。发现改善光催化活性的关键参数是GB介导的缺陷,该缺陷被认为是纳米颗粒融合界面处的氧/锌空位,同时据称保持其纤维结构,其中未画出任何关系暗示直接控制形态,表面积和缺陷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号