...
首页> 外文期刊>Metabolic engineering >Exploring biochemical pathways for mono-ethylene glycol (MEG) synthesis from synthesis gas
【24h】

Exploring biochemical pathways for mono-ethylene glycol (MEG) synthesis from synthesis gas

机译:从合成气中探索单乙二醇(MEG)合成的生物化学途径

获取原文
获取原文并翻译 | 示例
           

摘要

Mono-ethylene glycol (MEG) is an important petrochemical with widespread use in numerous consumer products. The current industrial MEG-production process relies on non-renewable fossil fuel-based feedstocks, such as petroleum, natural gas, and naphtha; hence, it is useful to explore alternative routes of MEG-synthesis from gases as they might provide a greener and more sustainable alternative to the current production methods. Technologies of synthetic biology and metabolic engineering of microorganisms can be deployed for the expression of new biochemical pathways for MEG-synthesis from gases, provided that such promising alternative routes are first identified. We used the BNICE.ch algorithm to develop novel and previously unknown biological pathways to MEG from synthesis gas by leveraging the Wood-Ljungdahl pathway of carbon fixation of acetogenic bacteria. We developed a set of useful pathway pruning and analysis criteria to systematically assess thousands of pathways generated by BNICE. ch. Published genome-scale models of Moorella thermoacetica and Clostridium ljungdahlii were used to perform the pathway yield calculations and in-depth analyses of seven (7) newly developed biological MEG-producing pathways from gases, including CO2, CO, and H-2. These analyses helped identify not only better candidate pathways, but also superior chassis organisms that can be used for metabolic engineering of the candidate pathways. The pathway generation, pruning, and detailed analysis procedures described in this study can also be used to develop biochemical pathways for other commodity chemicals from gaseous substrates.
机译:单乙二醇(MEG)是一种重要的石化,具有广泛应用于许多消费产品。目前的工业MEG-生产过程依赖于不可再生化石燃料的原料,如石油,天然气和石脑油;因此,探索来自气体的替代途径,因为它们可以为当前生产方法提供更环保和更可持续的替代方案是有用的。可以部署微生物的合成生物学和代谢工程技术,用于表达来自气体的新的生化途径,只要首先识别出这样的有前途的替代路线即可。我们使用BNICE.CH算法通过利用乙酰丙基菌的碳固定碳固定的木质Ljungdahl途径来从合成气面开发新的和先前未知的生物途径。我们开发了一系列有用的途径修剪和分析标准,以系统地评估BNICE产生的数千条途径。 Ch。已发表的Moorella Hotiroacetica和Clostridium Ljungdahlii的Genome-Scale模型用于进行途径的途径计算和深入分析的七(7)个新开发的生物兆的生产途径,包括CO2,CO和H-2。这些分析有助于识别更好的候选途径,而且还具有优异的底盘生物,可用于候选途径的代谢工程。本研究中描述的途径产生,修剪和详细分析程序也可用于开发来自气态基材的其他商品化学品的生物化学途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号