...
首页> 外文期刊>Metabolic engineering >Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol
【24h】

Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol

机译:一种酿酒酵母菌菌株的代谢工程,其能够同时利用葡萄糖和半乳糖产生对映致盲(2R,3R) - 丁二醇

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

2,3-Butanediol (BDO) is an important chemical with broad industrial applications and can be naturally produced by many bacteria at high levels. However, the pathogenicity of these native producers is a major obstacle for large scale production. Here we report the engineering of an industrially friendly host, Saccharomyces cerevisiae, to produce BDO at high titer and yield. By inactivation of pyruvate decarboxy-lases (PDCs) followed by overexpression of MTH1 and adaptive evolution, the resultant yeast grew on glucose as the sole carbon source with ethanol production completely eliminated. Moreover, the pdc-strain consumed glucose and galactose simultaneously, which to our knowledge is unprecedented in S. cerevisiae strains. Subsequent introduction of a BDO biosynthetic pathway consisting of the cytosolic acetolactate synthase (cytoILV2), Bacillus subtilis acetolactate decarboxylase (BsAlsD), and the endogenous butanediol dehydrogenase (BDH1) resulted in the production of enantiopure (2R,3R)-butanediol (R-BDO). In shake flask fermentation, a yield over 70% of the theoretical value was achieved. Using fed-batch fermentation, more than 100 g/L R-BDO (1100 mM) was synthesized from a mixture of glucose and galactose, two major carbohydrate components in red algae. The high titer and yield of the enantiopure R-BDO produced as well as the ability to co-ferment glucose and galactose make our engineered yeast strain a superior host for cost-effective production of bio-based BDO from renewable resources.
机译:2,3-丁二醇(BDO)是一种重要的化学品,具有广泛的工业应用,并且可以在高水平的许多细菌天然产生。然而,这些本地生产者的致病性是大规模生产的主要障碍。在这里,我们报告了工业友好宿主,酿酒酵母的工程,以高滴度和产量产生BDO。通过灭活丙酮酸脱羧 - 液体(PDC),然后过表达MTH1和适应性进化,所得酵母在葡萄糖上成长为唯一的碳源,完全消除了乙醇生产。此外,Pdc-菌株同时消耗葡萄糖和半乳糖,其知识在酿酒酵母中令人难以置信。随后引入由细胞溶质乙酸盐合酶(Cytoilv2)组成的BDO生物合成途径,枯草芽孢杆菌乙酰乳酸脱羧酶(BSALSD)和内源性丁二醇脱氢酶(BDH1)导致对映致(2R,3R) - 丁二醇(R-BDO)产生)。在摇瓶发酵中,达到了70%的物质的产量。使用FED分批发酵,从葡萄糖和半乳糖的混合物中合成了超过100g / l R-BDO(1100mm),红藻类两种主要碳水化合物组分。对enaliopureR-BDO的高滴度和产量以及共同发酵葡萄糖和半乳糖的能力使我们的工程化酵母菌株为来自可再生资源的生物基于生物的BDO生产的优越主体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号