【24h】

Surrogate accelerated Bayesian inversion for the determination of the thermal diffusivity of a material

机译:替代加速贝叶斯反演,用于确定材料的热扩散率

获取原文
获取原文并翻译 | 示例
           

摘要

Determination of the thermal properties of a material is an important task in many scientific and engineering applications. How a material behaves when subjected to high or fluctuating temperatures can be critical to the safety and longevity of a system's essential components. The laser flash experiment is a well-established technique for indirectly measuring the thermal diffusivity, and hence the thermal conductivity, of a material. In previous works, optimization schemes have been used to find estimates of the thermal conductivity and other quantities of interest which best fit a given model to experimental data. Adopting a Bayesian approach allows for prior beliefs about uncertain model inputs to be conditioned on experimental data to determine a posterior distribution, but probing this distribution using sampling techniques such as Markov chain Monte Carlo methods can be incredibly computationally intensive. This difficulty is especially true for forward models consisting of time-dependent partial differential equations. We pose the problem of determining the thermal conductivity of a material via the laser flash experiment as a Bayesian inverse problem in which the laser intensity is also treated as uncertain. We introduce a parametric surrogate model that takes the form of a stochastic Galerkin finite element approximation, also known as a generalized polynomial chaos expansion, and show how it can be used to sample efficiently from the approximate posterior distribution. This approach gives access not only to the sought-after estimate of the thermal conductivity but also important information about its relationship to the laser intensity, and information for uncertainty quantification. Moreover, this approach leads to significant speed up over traditional methods by orders of magnitude. We also investigate the effects of the spatial profile of the laser on the estimated posterior distribution for the thermal conductivity.
机译:材料的热性质的测定是许多科学和工程应用中的重要任务。当受到高压或波动的温度时,材料的表现如何对系统的基本组件的安全性和寿命至关重要。激光闪光实验是一种良好的技术,用于间接测量热扩散率,因此是材料的导热率。在以前的作品中,优化方案已被用于寻找最佳拟合给定模型和实验数据的导热性和其他数量的估计。采用贝叶斯方法允许关于实验数据的不确定模型输入的先前信仰,以确定后部分布,但使用采样技术探测这种分布,如马尔可夫链蒙特卡罗方法可以令人难以置信地计算密集型。对于由时间依赖性偏微分方程组成的前向模型尤其如此。我们构成了通过激光闪光试验确定材料的导热率作为贝叶斯逆问题的问题,其中激光强度也被视为不确定。我们介绍了一种参数代理模型,该模型采用了随机Galerkin有限元近似的形式,也称为广义多项式混沌扩展,并显示了如何使用近似后部分布有效地样品。这种方法不仅可以访问导热率的估计,而且还提供关于其与激光强度的关系的重要信息,以及用于不确定量化的信息。此外,这种方法通过数量级来实现传统方法的显着加速。我们还研究了激光的空间轮廓对导热率的估计后部分布的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号