...
首页> 外文期刊>Fortschritte der Physik >Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term
【24h】

Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term

机译:使用二阶项使用自发参数下转换源的生成四光子血红音状态

获取原文
获取原文并翻译 | 示例
           

摘要

Nowadays, the generation of multiphoton entangled states is almost realized by combining the coupled entangled photons emitted from spontaneous parametric down-conversion (SPDC) with the first-order term. In this case, one may focus mainly on the first-order term, and then avoid multipair emission events by restricting experimental parameters. On the other hand, for the higher-order terms in SPDC source, these emitted entangled photons have interesting features. For example, they are entangled maximally not only in photon number for the spatial modes, but also in polarization degree of freedom. In general, two photons, which are entangled in two or more degrees of freedom, are called hyperentangled pair of photons or hyperentangled state. We present a scheme to generate the four-photon hyperentangled state based on four indistinguishable photons emitted from SPDC source with the second-order term. Consider two SPDC sources with equal probability of emission of photons in respective spatial modes. With the passive linear optical devices, i.e., beam splitters, half wave plates, polarizing beam splitters, etc., under the condition of registering a specified four-photon coincidence, we can obtain the four-photon hyperentangled state in which the photons are entangled in both polarization and spatial-mode degrees of freedom. Here, of course, for an arbitrary fourfold coincidence detection, one obtains a canonical four-photon Greenberger-Horne-Zeilinger (GHZ) state. Then we show the results of fourfold coincidence detections and the corresponding probabilities for the four-photon GHZ states, where the generation of the four-photon hyperentangled state is included as long as we are not to distinguish the two detectors located at the same locations. As a result, our scheme has two notable features. When we only consider the second-order emission, since it is not needed for us to distinguish between the two SPDC sources, the present scheme is simple and feasible. Also, based on the postselection with fourfold coincidence detection, our scheme is suitable for the normal first-order emission where we restrict the four photons emitted from the same source. In this sense, our scheme is efficient. In a word, we describe a method to generate the four-photon hyperentangled state with the second-order emission in SPDC source, which may contribute to the exploration of multipair entanglement with higher-order emissions from the SPDC source.
机译:如今,通过将从自发参数下转换(SPDC)发射的耦合缠绕的光子与一阶项组合来实现多光子缠结状态的产生几乎实现了。在这种情况下,可以主要关注一阶项,然后通过限制实验参数来避免多足发射事件。另一方面,对于SPDC源中的高阶项,这些缠绕的光子具有有趣的功能。例如,它们不仅在空间模式的光子编号中缠结,而且在光子数中缠结,而且是在自由度的偏振度中。通常,两个以两个或更多个自由度缠结的光子称为HyperEntangled对光子或HyperEntangled状态。我们提出了一种基于从SPDC源发射的四个无法区分的光子以二阶项产生的四光子超输入状态。考虑两个SPDC源,其具有相应的空间模式中的光子发射的等概率。利用被动线性光学器件,即分束分路器,半波形,偏振束分离器等,在注册指定的四光子巧合的条件下,我们可以获得光子缠绕的四光子超纯标题状态在两种极化和空间模式的自由度中。这里,当然,对于任意的四倍重合检测,一个人获得规范四光子蔬菜植物-hinge-ZeeIner(GHz)状态。然后,我们显示了四倍重合检测的结果和四光子GHz状态的相应概率,其中包括四光子超输入状态的产生,只要我们不区分位于同一位置的两个探测器。结果,我们的计划具有两个值得注意的功能。当我们只考虑二阶发射时,由于我们不需要区分两个SPDC来源,因此目前的方案是简单可行的。此外,基于用四倍重合检测的后选择,我们的方案适用于正常的一流发射,在那里我们限制了从相同源发出的四个光子。从这个意义上讲,我们的计划是有效的。总之,我们描述了一种在SPDC源中使用二阶发射生成四光子超输入状态的方法,这可能有助于利用SPDC源的高阶排放来探索多足纠缠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号