...
首页> 外文期刊>Materials science in semiconductor processing >In-situ hydrothermal fabrication and photocatalytic behavior of ZnO/reduced graphene oxide nanocomposites with varying graphene oxide concentrations
【24h】

In-situ hydrothermal fabrication and photocatalytic behavior of ZnO/reduced graphene oxide nanocomposites with varying graphene oxide concentrations

机译:具有不同石墨烯氧化物浓度的ZnO / Simps氧化物纳米复合材料的原位水热制造和光催化行为

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, ZnO/reduced graphene oxide (ZnO/rGO) nanocomposites with various GO concentrations were hydrothermally fabricated. We showed that ZnO and rGO phases coexist in these ZnO/rGO nanocomposites and that the ZnO morphology varies from nanoplates to nanoparticles, with the average ZnO nanocrystal decreasing in size from 38 nm to 20 nm as the GO concentration increased from 0% to 10%. Oxygen-containing functional groups were strongly reduced during the ZnO/GO hybridization process used to form these nanocomposites. The visible 400-800 nm absorption band of the rGO layers increased in intensity with increasing GO concentration. Photocatalytic activity of ZnO/rGO nanocomposite samples was studied under visible light for 60 min. The photocatalytic properties of the ZnO/rGO nanocomposites were significantly superior to those of pure ZnO, with photocatalytic efficiency increasing with increasing GO concentration. Photocatalytic efficiency of ZnO/rGO nanocomposites increased by 30%, 32%, and 60% for samples with 4%, 6%, and 10% GO concentration respectively, after 60 min. These results highlight the potential of the ZnO/rGO nanocomposites for use in pollution-remediation applications.
机译:在本研究中,具有各种GO浓度的ZnO / X醛氧化物(ZnO / Rgo)纳米复合材料被水热制造。我们展示ZnO和Rgo相在这些ZnO / Rgo纳米复合材料中共存,并且ZnO形态从纳米板变化到纳米颗粒,随着38nm至20nm的平均ZnO纳米晶体减小,随着GO浓度从0%增加到10%至10% 。在用于形成这些纳米复合材料的ZnO /去杂交过程中,含氧官能团受到强烈降低。 RGO层的可见400-800nm吸收带随着GO浓度的增加而增加。在可见光下测定ZnO / Rgo纳米复合材料样品的光催化活性60分钟。 ZnO / Rgo纳米复合材料的光催化性质显着优于纯ZnO,具有随着GO浓度的增加而增加的光催化效率。在60分钟后,ZnO / Rgo纳米复合材料的光催化效率分别增加了30%,32%和60%,对于4%,6%和10%Go浓度的样品。这些结果突出了ZnO / Rgo纳米复合材料用于污染修复应用的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号