...
首页> 外文期刊>Mechanics of Advanced Materials and Structures >Evaluation of effective elastic properties of 3D printable interpenetrating phase composites using the meshfree radial point interpolation method
【24h】

Evaluation of effective elastic properties of 3D printable interpenetrating phase composites using the meshfree radial point interpolation method

机译:基于网眼径向点插值法评价3D可打印互穿相位复合材料的有效弹性特性

获取原文
获取原文并翻译 | 示例

摘要

Interpenetrating phase composites (IPCs) have recently been fabricated using three-dimensional (3D) printing methods. In a two-phase IPC, the two phases are topologically interconnected and mutually reinforced in the three dimensions. As a result, such IPCs exhibit higher stiffness, strength, and toughness than particle- or fiber-reinforced composites. In the current study, three unit cell models for the IPCs with the simple cubic (SC), face-centered cubic (FCC), and body-centered cubic (BCC) microstructures are developed using the meshfree radial point interpolation method. Radial basis functions with polynomial reproduction are applied to construct shape functions, and the Galerkin method is employed to formulate discretized equations. These unit cell-based meshfree models are used to evaluate effective elastic properties of 3D printable IPCs. The simulation results are compared with those based on the finite element (FE) method and various analytical bounding techniques in micromechanics, including the Voigt-Reuss, Hashin-Shtrikman, and Tuchinskii bounds. It is found that all of the simulation results for the effective Young's modulus and shear modulus fall between the Voigt-Reuss upper and lower bounds for each IPC considered, with the FE models predicting higher values than the meshfree models. In addition, it is seen that the SC microstructure leads to higher effective Young's modulus than the BCC and FCC microstructures. Furthermore, the numerical results reveal that the IPCs with the SC, BCC, and FCC microstructures can be approximated as isotropic materials (with the Zener anisotropic ratio varying between 0.9 and 1.0), with the BCC IPC being the most isotropic one, and the SC IPC being the least isotropic one among the three types of IPCs.
机译:最近使用三维(3D)印刷方法制造了互穿相位复合材料(IPC)。在两相IPC中,两相在三维中拓扑上互连并相互加强。结果,这种IPC比颗粒或纤维增强复合材料表现出更高的刚度,强度和韧性。在本研究中,使用MeshFree径向点插值方法开发了具有简单立方(SC),面为中心的立方(FCC)和身体中心立方(FCC)微结构的IPC的三个单元电池模型。利用多项式再现的径向基函数构造形状功能,采用Galerkin方法来制定离散的方程。基于单元的基于单元的网格免费模型用于评估3D可印刷IPC的有效弹性特性。将模拟结果与基于有限元(Fe)方法的仿真结果和微机械中的各种分析界限技术进行了比较,包括Voigt-Reuss,Hashin-Shtrikman和Tuchinskii边界。发现,有效杨氏模量和剪切模量的所有仿真结果均在考虑的每个IPC的voigt-Reuss上部和下限之间落在Voigt-Reuss Unipls和下限之间。此外,可以看出SC微结构导致比BCC和FCC微结构更高的杨氏模量。此外,数值结果表明,具有SC,BCC和FCC微结构的IPC可以近似为各向同性材料(随着齐纳各向异性比在0.9和1.0之间变化),BCC IPC是最具各向同性的,并且SC IPC是三种类型IPC中最不同时的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号