首页> 外文期刊>Mechanics & Industry >Multi-objective optimization of a sports car suspension system using simplified quarter-car models
【24h】

Multi-objective optimization of a sports car suspension system using simplified quarter-car models

机译:使用简化的四分之车模型进行跑车悬架系统的多目标优化

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, first, the vibrational governing equations for the suspension system of a selected sports car were derived using Lagrange's Equations. Then, numerical solutions of the equations were obtained to find the characteristic roots of the oscillating system, and the natural frequencies, mode shapes, and mass and stiffness matrices were obtained and verified. Next, the responses to unit step and unit impulse inputs were obtained. The paper compares the effects of various values of the damping coefficient and spring stiffness in order to identify which combination causes better suspension system performance. In this regard, we obtained and compared the time histories and the overshoot values of vehicle unsprung and sprung mass velocities, unsprung mass displacement, and suspension travel for various values of suspension stiffness (K-S) and damping (C-S) in a quarter-car model. Results indicate that the impulse imparted to the wheel is not affected by the values ofC(S)andK(S). IncreasingK(S)will increase the maximum values of unsprung and sprung mass velocities and displacements, and increasing the value ofC(S)slightly reduces the maximum values. By increasing bothK(S)andC(S)we will have a smaller maximum suspension travel value. Although lower values ofC(S)provide better ride quality, very low values are not effective. On the other hand, high values ofC(S)andK(S)result in a stiffer suspension and the suspension will provide better handling and agility; the suspension should be designed with the best combination of design variables and operation parameters to provide optimum vibration performance. Finally, multi-objective optimization has been performed with the approach of choosing the best value forC(S)andK(S)and decreasing the maximum accelerations and displacements of unsprung and sprung masses, according to the TOPSIS method. Based on optimization results, the optimum range ofK(S)is between 130 000-170 000, and the most favorable is 150, and 500 is the optimal mode forC(S).
机译:在本文中,首先,使用拉格朗日方程来源出来的选择跑车悬架系统的振动控制方程。然后,获得了等式的数值解决方案以找到振荡系统的特征根,并获得自然频率,模式形状和质量矩阵和刚度矩阵。接下来,获得对单位步骤和单元脉冲输入的响应。本文比较了阻尼系数和弹簧刚度的各种值的影响,以确定哪种组合导致更好的悬架系统性能。在这方面,我们在四分之一车模型中获得并比较了车辆Unsprung和簧盖质量速度,Unsprung质量速度,未填充质量位移和悬浮液(Ks)和阻尼(CS)的各种值。结果表明,赋予车轮的脉冲不受频率的值的影响。 CAVELIDGK(S)将增加术语和簧隆质量速度和位移的最大值,并增加略微降低最大值的幂值。通过增加Bothk(s)和频道,我们将具有较小的最大悬架行程值。虽然较低的幂值提供更好的乘坐质量,但值得非常低的值无效。另一方面,高值的频道和k(s)导致静液悬浮液,悬浮液将提供更好的处理和敏捷性;悬架应设计具有设计变量和操作参数的最佳组合,以提供最佳的振动性能。最后,根据Topsis方法选择最佳值Forc(s)和k(s)和降低未填充和簧盖质量的最大加速度和位移的方法,已经进行了多目标优化。基于优化结果,最佳范围为130000-170 000,最有利的是150和500是最佳模式Forc(S)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号